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Abstract: We present a novel method to characterize the morphology of semicircular canals of the inner
ear. Previous experimental works have a common nexus, the human-operator subjectivity. Although
these methods are mostly automatic, they rely on a human decision to determine some particular
anatomical positions. We implement a systematic analysis where there is no human subjectivity.
Our approach is based on a specific magnetic resonance study done in a group of 20 volunteers. From
the raw data, the proposed method defines the centerline of all three semicircular canals through a
skeletonization process and computes the angle of the functional pair and other geometrical parameters.
This approach allows us to assess the inter-operator effect on other methods. From our results,
we conclude that, although an average geometry can be defined, the inner ear anatomy cannot be
reduced to a single geometry as seen in previous experimental works. We observed a relevant variability
of the geometrical parameters in our cohort of volunteers that hinders this usual simplification.

Keywords: semicircular canals; inner ear; skeletonization

1. Introduction

The spatial orientation of the three semicircular canals (SCs) has been a matter of interest since
early anatomical studies of the inner ear and temporal bone. Recent clinical studies show that SCC
spatial orientation plays a main role in specific pathologies (i.e., positional vertigoes [1]). In addition,
the specific morphology of the vestibular system can explain the variability on the induced adverse
symptoms (i.e., vertigoes and dizziness) on patients that are subjected to MRI high magnetic fields [2–4].
Hyrtl first, and then Sato, Siebenmann and Schoenemann later, in the transition from the 19th to the
20th centuries, gave the first measurements of the angles between the 3 SCs. The methodology
was mainly based on corrosion casts and major differences were seen between the results given by
different authors [5,6]. Since then, other methods have been developed to study the anatomy of the
SC post-mortem.

With the advent of modern imaging technology and in particular with the ability to assess axial
scans and perform reconstructions in several planes, more detailed in vivo evaluations in higher
amounts of bones have been performed. However, even for computed-tomography (CT) and magnetic
resonance imaging (MRI) studies, the differences in results are still significant, although of lower
magnitude than before. CT scans [7,8] show some variability in results except for the angle between
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the horizontal SC and posterior SC, where results are more consistent. When compared to results
in more recent anatomical measurements made in explanted temporal bones [9], the differences are
smaller, and can, in general, be attributed to the exclusion of some parts of the canal in the analysis
(common crus and ampullæ). In the case of MRI, data also differ and the angles between canals (in the
same ear) are close to 90◦ in the case of the anterior and posterior SC [10] as well as in the case of the
anterior and horizontal SC [11].

In general, the canals do not lie in specific planes in the space. Since the first measurements,
it became clear that the canals follow a sinuous course and only their mid-portion is appropriately in
a plane; that portion makes an obtuse angle with the ampullated and non-ampullated ends. In addition
to this, other attributes of the canal (non-planarity, radius of curvature and length of the common
crus), well documented with micro-CT scans [12], render the spatial orientation characterization task
complex and elusive.

The relevance of spatial orientation to normal range of function dates back to the very
first experiments in vestibular physiology. Since Crum-Brown, coplanarity (as documented and
experimented in the horizontal canals) was extended to the six SCs. The planes for the left anterior canal
with the right posterior (LARP) and for the right anterior with the left posterior (RALP) considered,
as anatomical and functional units, became a matter of anatomical interest throughout the years. More
recently, since their specific evaluation has become a standard in vestibular testing at bedside [13],
the interest has grown.

Previous experimental works based on post-mortem dissections [9,14] or imaging [7,10,15] have a
common nexus, the data processing protocol and extracted information always depend on subjective
factors that are involved on how to delimit the section of the canal that must be considered in the
analysis. In all the previous works, this is the decision of an expert operator. Recently published works
by A.P. Bradshaw et al. proposed a mathematical method that allows 3D measuring and modeling of
the semicircular ducts in living humans [12]. Their mathematical method automatically reconstructs
the semicircular ducts geometry from computed tomography images validating the results with
micro-computed tomography as ground truth. The final result is a centroid path of the cavities that
allows extracting global characteristics of the vestibular cavity. Although the method proposed by
A.P. Bradshaw et al. largely suppresses the arbitrariness, the initial step of the protocol still requires
an operator to select the initial point of the ducts. In addition, this method accurately defines the
centerlines of the ducts but ignores the SCs local diameter as a geometric parameter that can help to
improve the characterization of the other parameters.

In this study, we were interested in defining in a group of normal subjects the planar orientation
of the three SCs with the use of 3D high-resolution MRI images. We present an automated method
that allows computing the SC duct morphological characteristics without subjectivity or operator
variability. Our approach is based on an algorithm that computes the geometric characteristics of
the ducts (3D orientation, diameter, and non-planarity) through a skeletonization process based on a
fictitious repulsive force. In addition, the algorithm tests the influence of retaining only a fraction of
the ducts (mimicking the potential inter-operator variability).

2. Materials and Methods

2.1. Subjects

The cohort of participants on this study are healthy volunteers recruited among the students
and staff of the University of Navarra. The study was approved by the Ethics Research Committee
of the University of Navarra. The inclusion criteria were healthy volunteers aged 18 years or older.
The exclusion criteria included any potential illness related to the inner ear, such as dizziness, a medical
history of hearing or visual problems and MRI incompatibilities such as claustrophobia, pregnancy,
metal implants, etc.
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Before inclusion in the study, subjects were evaluated at the Department of Othorinolaringology
of the Clínica Universidad de Navarra by an expert otholaringologist in order to verify the absence of
pathologies. The normality tests included normal Video Head Impulse Test (vHIT), Cervical Vestibular
Evoked Myogenic Potential (cVEMP), Ocular Evoked Myogenic Potential (oVEMP) and Romberg test.
After these evaluations, we retained a final group of 20 participants from an initial set of 30 volunteers.
The volunteers received oral and written explanations and provided written informed consent.

The final volunteer group after the selection process was formed by 20 subjects (age span,
19–45 years, with an average age of 23.9 years). The group was divided into 9 men with an average
age of 26.5 (±7.8) years and 11 women with an average age of 21.72 (±1.9) years.

2.2. Imaging Protocol

MRI studies were performed on a 3T whole-body scanner (Trio TIM, Siemens AG, Erlangen,
Germany) using a 32-channel head array. First, a T2 weighted 2D fast spin-echo (FSE) sequence was
employed to acquire anatomical images in coronal orientation, which were subsequently used to
localize the high-resolution scan.

High-resolution images were acquired using a three-dimensional Fourier transformation
constructive interference in steady state (3DFT-CISS) gradient-echo sequence [16] in axial oblique
orientation with the imaging parameters shown in Table 1.

Table 1. 3DFT-CISS sequence parameters that allow high-resolution imaging of the whole vestibular system.

Property Value

Flip angle 47◦

TR 6.13 ms
TE 2.82 ms
FOV 190× 190× 32 mm3

Matrix 320× 320× 72
Resolution 0.6× 0.6× 0.4 mm3

BW 422 Hz/pixel

The slab was positioned to include the inner ear, based on the FSE localizer (Figure 1).

Figure 1. Subject imaging acquisition example: (left) volunteer coronal FSE localizer. Dashed straight
yellow lines delimit the slab where the CISS-3D sequence was applied; and (right) cumulative projection
of the CISS-3D sequence that includes the vestibular system, where semicircular ducts can be easily
detected. The yellow circumferences denote the region where our study was conducted.
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2.3. Labyrinth Volume Reconstruction

We restricted the analysis to a sphere of diameter 20 mm centered around each one of the
semicircular ducts. From the 3DFT-CISS sequence, we recovered a matrix with 320× 320× 72 voxels
that correspond with the x-, y-, and z-axes (usual Reference Coordinates System (RCS) reference frame)
and a resolution of 0.4 mm in the head–foot direction and 0.6 mm in the two other directions. Our first
step was to uniformize the resolution to 0.4× 0.4× 0.4 mm3 using a bicubic interpolation in the x-y
plane (transverse plane).

The MRI sequence used in this experiment provided high signal intensity in all spaces filled with
intralabyrinthine fluid, while the signal outside was very small (5%) compared to the value inside
the ducts. We could use this factor to split these volumes through a threshold value that binarized
the original image. A typical problem of the binarization is the voxelization caused by the loss of
information when a threshold is applied to a continuous variable. To prevent this, a common approach
is to upscale the image and then binarize. We applied an upscale by a factor 3, thus the final binarized
image used for the volume rendering was 0.13× 0.13× 0.13 mm3. In Figure 2, we present an example
of this process, the original data, and two binarized sections, one using the original resolution and the
other one with the upscaled version, can be observed.

In the last panel, we present an isosurface that corresponds to 20% of the maximum intensity
value in the interpolated image. This value is used as a threshold for the binarization in the whole
group of volunteers. The specific value used as threshold is not critical, as far as it remains far from the
two extrema (the values inside and outside the canals).

Figure 2. (Top left) original section from the MRI scan; (Top right) binarization using the same
resolution; (Bottom left) binarization upscaling the original matrix; and (Bottom right) isovolume
obtained using the upscaled matrix.

2.4. Labyrinth Skeletonization Method

One of the possibilities for the analysis of the ducts’ orientation is to assume that they follow a
specific geometry, such as a circle, ellipse, or other 3D shape and then adjust the one that best describes
the data. Here, we relaxed this restriction and obtained an arbitrary shape of the vestibular system,
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and then analyzed how the characteristics of these reconstructed ducts depend on the specific details
of the analysis.

The shape of the ducts was obtained through a skeletonization [17] process of the binarized
volume. This name encompasses a broad battery of different algorithms that generate a curve retaining
the topology of the original 3D volume (Figure 3). The difference among the various algorithms
depends on how this curve is defined.

Figure 3. Transparent volume of volunteer S18 SCs. Inside the volume, each colored line represent the
centerline of one duct: (a) the whole centerline is considered; and (b) the ampulla is excluded from the
centerline. The sphere and diamonds correspond to the beginning and end of the retained trajectory
(thick line) from the original centerline (thin line). The color encoding is yellow for the horizontal, blue
for the anterior and red for the posterior ducts.

Skeletonization methods have been studied for decades and their results have been tested by
many authors in different experimental and applied topics, such as virtual navigation, computer
graphics animation, medical applications, data analysis, etc. [18–22]. Some methods are based on the
definition of this line as the set of points that are equidistant to the surface (using a geometric distance
that can be Euclidean or not). Other methods erode the original volume reducing the thickness until it
collapses to a line (thinning methods). However, these two families are very sensitive to noise and to
the roughness of the volume boundary.

Here, we focused on a specific family called Potential Field Methods that are less sensitive to these
effects. The idea is that a fictitious repulsive and conservative force is associated to each one of the
surface elements, and then a scalar potential field is created in the interior of the considered volume.
This potential field will decrease when we move away from the surface and when we approach the
central part of the volume. For any possible cross section of each canal, there will be at least one point
inside where this potential reaches its minimum value. The skeleton defined through this algorithm is
the line ~d that connects the set of minima that will be recovered from any plane that chops a duct.

From a practical point of view, we can define a vector force field from this potential. Any fictitious
particle under the action of this force will be pushed to the skeleton and once it reaches this region it
will restrict its dynamics to displacements along this line.

We used an implemented MatLab (The MathWorks, Massachussets, USA) toolbox named Volume
Skeleton Toolbox (VSK) [23]. In this toolbox, the specifically used method is called Generalized
Potential Field method. This script splits the volume into boundary elements (voxels with at least
one empty neighbor voxel) and interior voxels. Then, a potential field V is generated (we used a spatial
dependence with the fifth power V ∼ 1/r5 of the distance to the surface r ). A dynamical system is
defined where the acceleration of the fictitious particles depends on ~Φ = −∇V. These particles will
find (along the trajectory obtained connecting all these minima) some points where the dynamic stops
(critical points). We can classify these critical points as local minima of the potential and saddle-points
using the Jacobian of this function ~Φ. The skeleton can be recovered simulating the evolution of points
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close to the saddle-points and that propagate towards the local minima, with a dynamics always
restricted to the skeleton itself (because in any other direction different from the one defined by the
skeleton the potential will increase, and thus the particles will experience an acceleration pushing
them back to the skeleton). These critical points are obtained through a Newton iterative method with
a convergence criterion of 4 · 10−3 (being 1 the voxel size). The step for trajectory tracing is 0.25 and
the maximum number of steps is 200. A more detailed description can be obtained in [18,20].

Although VSK has been tested in numerous geometries, we noted the presence of several artifacts
(extra lines) in our working volumes with the parameters specified above due to the ducts complexity
and the cochlea presence in the working volume. We reunified redundant points when their mutual
distance was smaller than one voxel. In addition, we deleted the cochlea points because they fall out
of the scope of this analysis. With these new steps, the merging of all the trajectories generated on
the semicircular ducts define the centerline (Figure 3a). Table 2 shows a schematic description of the
centerlines definition code.

Table 2. Pseudo-code of labyrinth skeletonization method based on potential field.

1 Begin
2 Input: RAW MRI Image;
3 Perform an ×3 upscale;
4 Perform a binarization (Intensity-based, threshold 20%) ;
5 Perform a boundary/internal voxels labeling (Neighbourhood based);
6 Define saddle-points/local minima (Potential field);
7 Skeleton curves generation (Newton iterative method);
8 Reunify redundant points/curves;
9 Output: centerline curves;
10 end

2.5. Geometrical Parameters and Morphology Characterization

It has been clearly stated above that an accurate definition of the SCs morphology is important.
One crucial point is that the cupulæ are part of the vestibular cavity producing an increase in the
diameter of the SCs and should be withdrawn from the calculations. Here, we explored a systematic
way to restrict the geometrical analysis to the ducts themselves, reducing progressively the length of
the canal considered and testing the effects on the geometrical parameters.

The procedure is as follows: once the original central lines of the ducts have been identified
(Figure 3a), we characterized the minimum set of geometrical parameters that can describe their
morphology. From these recovered centerlines, our first step was to obtain a plane that fits best
(least-squares of the normal distance to the plane) of the set of points that define the trajectory. From
the normal vector of this plane, we recovered the 3D spatial orientation of each canal, and we could
obtain the relative orientation between each pair (the angle between these vectors). Other parameters
that we obtained are the non-planarity (normal distance from the canal to the plane) and the ellipse
that fits best (least-squares algebraic distance) to the projection of the canal on the plane.

Depending on the cupula section considered as part of the semicircular ducts, the planes that
represent the canals show slight differences. For each point of the original trajectory, we computed the
distance from the surface of the volume r(~d). In Figure 4, we present these values for all the canals
and volunteers. As the different canals have slightly different sizes, we normalized the position along
each duct with its corresponding length. The variability of the canal radii between different volunteers
(gray lines) and along the canal position is larger than the uncertainty due to the algorithm (i.e., the
size of the binarized voxel).
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Figure 4. Dependence of the canal radius on the normalized position according to the results obtained
with the proposed skeletonization method: (top) the ASC radius for all studied volunteers, where the
black thick line represents the mean value, and the red lines the percentiles 25 and 75; and the same
procedure is followed for the PSC (middle) and the HSC (bottom). The ampular ends are located on
the right (for a position 1) and the non-ampular on the left.

These distances were retained as an indicator of the diameter of the duct along the centerline
and we refer to them as radius, as each section can be assimilated to a cylinder. The cross-section of
the canal defined by a plane perpendicular to the skeleton has an arbitrary shape, in most cases a
convex shape different from a circle. Here, we used the generalization of the definition of diameter
as the largest distance between two tangent straight lines at opposite sides of the shape boundary,
and the radius is the shortest distance from the centerline to the surface. The local diameter T of the
duct varies along the trajectory ~d and corresponds to T(~d) & 2 r(~d). We defined a threshold for these
radii to determine the ampullæ region: all points above that threshold were assumed to be part of the
cupula of the channel and were removed from the calculation. We repeated the geometrical analysis
described above determining the planes, ellipses, non-planarities and angles. Once this step was
finished, we slightly decreased the threshold and checked its effect on the new parameters. The main
advantage of this process is that we could sequentially determine the effects of the excluded area in
the SCs definition without subjectivity due to the action of the operator. Table 3 shows a schematic
description of the SCC morphological characterization code.
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Table 3. Pseudo-code of morphological characterization.

1 Begin
2 Input: centerline curves;
3 Define canals radii (Distance from volume surface);
4 Define ampullae threshold range ini and end (Local radii thresholding);
5 for (Ampullaeini) to (Ampullaeend)
6 Remove ampullae points from centerlines;
7 Define plane fits best centerlines (Least-squares of normal distance to the plane);
8 Define normal vectors to planes;
9 Define relative orientation between canals (Angles between vectors);
10 Define non-planarity (Normal distance from canal to plane);
11 Define representative ellipse (Least-squares algebraic distance);
12 end
13 Output: Radii, Planes, Ellipses, Nonplanarities and Angles
14 end

3. Results and Discussion

Based on the proposed method, we computed the centerline for all three SCs of each volunteer’s
right ear. From the initial skeleton (Figure 3, top), we removed the common crus structure. The initial
SCs centerlines considered in the study are the remaining sections of the ducts: the anterior and
posterior ducts paths are defined from the common intersection point to their ampullæ.

Figure 4 shows the local radius for all the studied volunteers and the mean value for each SCs.
As expected from the data available in the literature [24], all the A, P and H semicircular ducts
present a central region where the radius reaches a roughly constant value r ∼ 0.5 mm regardless of
the volunteer.

A histogram of the whole data gives an accurate approximation of the SCs’ radii (Figure 5).
There are no data for radius smaller than 0.3 mm, being the mode within 0.5–0.6 mm for all ducts,
which corresponds to the value obtained on the central regions (Figure 4). In contrast, the extreme
values of the plots show an increase of the radius value that can be up to three times (1.5 mm) the
central region radius. These last values correspond to the ampullæ.

Figure 5. SCs’ radii histogram for each duct.

As happens in other studies, in many volunteers, the SCs are far from simple toroids and are
bent (Figure 6). This bending is more relevant close to the ampulla region, and consequently the
orientation of the plane that fits to the trajectory that defines the duct (Figure 7) is largely affected
by the presence of the ampulla, be it complete or partial, in the calculations. In all previous works,
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the determination of the ampullæ position was done by an expert operator. There is an inherent
inter-operator variability due to this decision, and we sought to evaluate its role on the determination
of the geometric parameters. We explored the effect of progressively removing the ampullæ based on
a threshold of the radius that defines the section to be removed. Once the distribution of radii r(~d) in
decreasing order was obtained for each canal, the threshold was defined using an increasing percentile.
A zero value means that the whole trajectory was retained, and 100% that everything was rejected.
For any intermediate value, we found the first and last points that fulfill the requirement. Due to the
roughness of the channels, the diameter is not a monotonic function of the canal position ~d, and it may
happen that the diameter increases again in some sections (see Posterior SC behavior in Figure 4, for a
position d/dMax = 0.8). In those situations and for a given threshold, we could retain sections with a
diameter larger than the rejection threshold value. This is why (see Figure 8, bottom right) we obtained
retained lengths for the posterior duct that can be up to 10% larger than the value that corresponds to
the rejection threshold.

Figure 6. 3D semicircular ducts reconstruction from the 3D high-resolution MRI scan of Volunteer 18:
(left) the whole SCs reconstruction where we can easily locate the three ducts; and (right) various
views the show, from top to bottom, the Horizontal SC (HSC), Posterior SC (PSC) and Anterior SC
(ASC), respectively.

Figure 7. Transparent 3D reconstruction of SCs ducts. The solid sphere and diamond represent the
beginning and the end of the retained part (continuous thick line) of the original trajectory (thin line)
for determining the fitting plane. Each transparent circle represents the fitted plane to each one of the
canals. The arrows correspond to the normal vector of each plane. The color encoding is yellow for the
horizontal, blue for the anterior and red for the posterior canals.
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Figure 8 shows the SCs Anterior–Horizontal (AH), Anterior–Posterior (AP) and
Posterior–Horizontal (AH) pairs’ angles as a function of the percentile chosen for rejection.
The results show that in some cases there is a clear dependence of the computed SCs pair angle on the
rejection threshold. PH angle presents the most regular behavior, with a plateau close to 90◦ regardless
of the discarded region. Nevertheless, there are two volunteers whose angles are around 80◦.

However, for the AP and AH angles, we have a large variability. The AH angle depends on the
percentile threshold applied, although, for a certain value of canal discarded, the angle tends to an
asymptotic angle around 90◦ too. On the other hand, the AP is totally dependent on the duct retained,
and the angle has a growing trend without saturation for the range of explored lengths.
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Figure 8. AP, AH and PF pairs angles based on the discarded percentile of the ducts length. Gray lines
correspond to different volunteers. The median angle (black thick lines) and the limits defined by the
25th and 75th percentiles (thick red lines) are also presented. The bottom-right panel shows the average
channel length as a function of the percentile used for rejection.

Even more important, on the AP angle and for small percentile thresholds, there is a region where
the angle changes more than 5◦, and it becomes evident that we must expect a large inter-observer
variability for this value when an operator has to decide the position of the ampullæ. A similar result
can appear on the AH angle. We do not expect a large inter-observer variability on the average PH
angle when this value is computed for a large set of volunteers. This could explain the high variability
on the results present in the literature with different techniques (skull sectioning, imaging techniques
and mathematical model).

Concerning the non-planarity of the ducts, we present in Figure 9 the normal distance to the fitting
plane for the trajectories that define the centerline of the SCs. We present two situations: the whole
duct and a rejection threshold using the 40th percentile. In both cases, the distance is small, comparable
to the diameter of the SCs, except when we are in the ampulla regions. This result is even more evident
in the PSC, where the ampulla induces a deviation of 1.5 mm. When the rejection threshold is applied
removing the ampullæ, these distances decrease to values smaller than the radius of the canal (0.5 mm),
and we can conclude from this analysis that the central regions (that retain more than 60% of the whole
length) of the SC lie in the fitting plane.
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Figure 9. A, P and H non-planarity (defined as normal distance) referred to the reference plane:
(left) this distance when the whole duct is retained; and (right) the evolution of this distance when the
40th percentile is discarded. Grey lines represent different volunteers, the black line is the average and
the red lines represent the limits for one standard deviation for each SCs.

An important statistical indicator about the influence of the ampulla presence in the non-planarity
is the standard deviation along the trajectory of the distances between the SCs ducts and the reference
planes. Here, we present the average value of this statistical computed for all the volunteers (Figure 10).
From this analysis, it is clear that for the PSC and HSC a rejection threshold larger than 10% does not
produce a noticeable effect, as the global distance does not substantially change. However, on the ASC,
this non-planarity remains important even using a rejection threshold of 40%. This result indicates that
the Anterior SC is the most curved canal, and also explains the behavior of the AP and AH angles,
which strongly depend on the applied threshold. Even though the separations we obtained for a
rejection threshold of 40% are 〈sH〉 = 0.08 mm, 〈sA〉 = 0.15 mm, and 〈sP〉 = 0.10 mm, where 〈·〉
denotes the average computed over the whole group of volunteers, individual separations can be
as large as sH = 0.36 mm, sA = 0.34 mm and sP = 0.36 mm for the whole canal and sH = 0.17 mm,
sA = 0.24 mm and sP = 0.17 mm for 40% rejection, respectively.

Figure 10. Standard deviation for the A, P and H plane separation from the reference plane as a
function of the percentage of discarded SC. Grey lines represent different volunteers, the black line is
the average and the red lines represent the limits for one standard deviation for each SCs.
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Bradshaw et al. [12] described the bending of the SCs ducts assuming that they lie on a curved
surface (a generalized cylinder) instead of a plane. From the data published in the Appendix of that
paper, we could estimate that the non-planarity for their model assigns a standard deviation of the
distance to the respective planes of sA = 0.29 mm, sP = 0.19 mm and sH = 0.16 mm, values which
are compatible with the values we obtained using a rejection of roughly 5% (see the thick black lines
on Figure 10). From our data for posterior and horizontal SCs, we observe that a slight variation on
the decision about where are the ampullæ located could modify the parameters of this model. Again,
the decision on how the ampullæ is considered can affect the parameter values of any model.

As in previous works, we verified that the centerlines are very close to ellipsoidal trajectories,
thus we extracted the parameters that can be obtained from the individual paths. A least square fitting
was done (based on an algebraic distance) for each volunteer and canal. Figure 11 shows in red the
ellipse whose semi-axes are the average of the whole set of ellipses that better describe each of the
SCs projected on its corresponding plane. We present two situations, retaining all the duct or with a
rejection threshold of 40%. The individual trajectories appear in gray in the same figure. It must be
noted that the ampullæ position, in most of the cases, is located at one end of the major axis.

Figure 11. Centerlines projected on the respective reference planes for the A, P and H ducts: (top) the
behavior for the whole ducts; and (bottom) when 40% is discarded. The red thick line correspond to
the ellipse that best fits all the data from the different volunteers.

We can appreciate small differences of the fitting parameters of the ellipses in both 0% and 40%
rejection thresholds. In Table 4, we present the variability of the semi-axes. In both cases, our data
include the average and their corresponding standard deviation for the whole set of volunteers.
We include for reference the values published in two previous works, by Bradshaw et al. [12] and
Daocai et al. [24]. The values from this last study were inferred from their published values, as they
only included the size of the circular cavity defined inside each canal. As our characterization is done
using the central path along the ducts, we enlarged their values with the canal radii values of our
work. We can appreciate that there is no real difference between these three studies, as the variability
(defined from the standard deviation in our cohort) of these parameters is a 10%. However, it should
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be noted how the rejection of the ampullæ region can affect in a similar degree those parameters and
the operator action that removes that part is a source of artifact that increases the data variability.

Table 4. Mean value and standard deviation of the fitting ellipse control parameters (major and minor
ellipse axis) for the three different SCs. The values presented correspond to two cases: retaining the
whole duct and using as rejection threshold the percentile 40%. We include also the results of Bradshaw
et al. [12] and Daocai et al. [24] for comparison.

Anterior Posterior Horizontal

0% discarded A(mm) 3.88± 0.27 3.65± 0.20 2.93± 0.21
B(mm) 3.12± 0.18 3.00± 0.21 2.41± 0.15

40% discarded A(mm) 3.62± 0.35 3.76± 0.39 2.66± 0.27
B(mm) 3.12± 0.25 2.96± 0.25 2.39± 0.22

Bradshaw et al. A(mm) 3.59 3.37 2.68
B(mm) 3.28 3.14 2.54

Daocai et al. A(mm) * 3.67 3.45 2.74
B(mm) * 3.33 2.86 2.01

* Estimated parameters.

4. Conclusions

A new method to extract the geometrical parameters of the semicircular canals of the inner ear is
presented. Our approach relies on the skeletonization of a binary image obtained from a high-resolution
magnetic resonance image acquired from a cohort of 20 volunteers. This process avoids subjective
decisions made by the observer, and systematically analyzes the quantitative effect of the manual
definition of the canals.

Other previous experimental works have analyzed this problem using similar techniques
(i.e., X-ray TC, MRI, or skull analysis) but all of them need the subjective input of a human operator
at some point during the analysis. This introduces an inter-operator variability that our method
completely removes. Even more interesting, we could mimic the role of this operator by systematically
reducing the canal length taken into account on the calculations and observe how this affects the
retrieved geometrical parameters.

The whole set of geometrical parameters can be obtained: width, radius, angle of the functional
pairs, and non-planarity. Our results reveal that there is a large variability across the parameters, which
makes it difficult to restrict all the geometries to a single one that represents the whole group.
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