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We show the possibility of achieving experimentally a Takens-Bogdanov bifurcation for the nonlinear
interaction of two transverse modes (/==1) in a CO, laser. The system has a basic O(2) symmetry
which is perturbed by some symmetry-breaking effects that still preserve the Z, symmetry. The pattern
dynamics near this codimension-two bifurcation under such symmetries is described. This dynamics
changes drastically when the laser properties are modified.
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I. INTRODUCTION

Pattern formation in physical systems is an area of ac-
tive research. It has been recently pointed out that lasers
can provide a ““test bench” for these studies, as it is possi-
ble to have many active transverse modes which, through
nonlinear interaction, give a complicated spatiotemporal
dynamics [1]. Recent evidence shows that some interest-
ing phenomena such as defects, vortices, chaotic alter-
nancy, etc., can be found in laser systems [2]. Unfor-
tunately, in most cases these works do not enlighten the
mechanisms behind the transition from simple solutions
to the spatiotemporal uncorrelated ones. A step in un-
derstanding this complex dynamics is to study the non-
linear interaction among a few modes which bifurcate
from the zero solution [3,4]. This paper strives in this
direction.

It has been reported that some qualitative features of
the transverse patterns of intensity observed in CO, lasers
can be explained in the frame of the theory of bifurca-
tions in the presence of symmetries [1,5]. The laser tube
imposes the O(2) symmetry (rotations and reflections).
The mode amplitude equations having this symmetry pre-
dict that the stable modes with nonzero angular momen-
tum bifurcating from zero should be traveling waves, in
contradiction with experiments. Anisotropies in the laser
parameters (pumping, losses, or disalignments in the set-
up, etc.) break the O(2) symmetry. An agreement be-
tween theory and experiment can be reached by introduc-
ing a symmetry-breaking term preserving the Z, symme-
try. This model successfully predicts the stability of the
standing waves widely observed in the laser transverse
section. The prediction of secondary solutions that arise
from the standing waves is another achievement of the
model with “imperfect” symmetry. These solutions are
either a mixture of a standing wave and traveling waves,
or modulated waves that appear from a Hopf bifurcation
of the standing waves.

The conditions for a CO, laser displaying those solu-
tions that bifurcate simultaneously from the standing
wave (codimension-two point) are analyzed here. The dy-

1050-2947/94/49(6)/4916(6)/$06.00 49

namics near such bifurcation and the intensity patterns
resulting from this situation are investigated. Work in
this direction has been done in traveling-wave convection
in binary mixtures. In this case, the presence of distant
sidewalls in systems that are translation-invariant break
the O(2) symmetry and the simplest possible symmetry-
breaking effects are discussed when the system undergoes
a Hopf bifurcation [6].

This paper is organized as follows. In Sec. II we dis-
cuss the properties of the physical system and we present
the equations describing the dynamics of the active pri-
mary modes in this system. A linear study of these
modes is performed in order to identify the possible
secondary solutions that might bifurcate from them. In
Sec. III we analyze the conditions under which a non-
linear interaction between the secondary solutions is pos-
sible, and a normal form reduction of the equations is
carried out. After computing the coefficients of this nor-
mal form in terms of parameter values for a CO, laser, we
determine the two possible scenarios. We discuss the
kind of patterns that could be observed under these con-
ditions in Sec. IV. Section V sets out some conclusions
and provides some guidelines for further experimental
observation.

II. MODEL AND PRIMARY BIFURCATIONS

The physical system is a CO, laser in a Fabry-Pérot
cavity. The active medium is contained in a cylindrical
tube, with a perfectly reflecting plane mirror at one end
and a curved mirror with partial reflectivity at the other
end. Physically, the effective curvature of this mirror can
be modified by inserting a passive optical device. More-
over, we are interested in the interaction among modes
with nonzero angular momentum. This can only be
achieved experimentally by placing an intracavity iris
which inhibits the Gaussian mode [1].

We therefore consider that the electric field can be ex-
pressed in terms of the modes arising from a Hopf bifur-
cation from the zero solution,

E =P ,(r)L ,(z)e'“ (z,e"0+2z,e " 1?) | (1)
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where P,(r) and L(z) account for the radial and longitu-
dinal dependence of the bifurcating modes, respectively,
and 6 is the angular variable. The integer / denotes the
angular momentum and o is the temporal frequency of
the modes. The complex amplitudes z; and z, are
governed by the equations

zy=Az,— A(z,z1 +22z,23 )z, tez, , )
zy=Az,— A(2z,z} +2z,z5 )z, te€z, , (3)

which are obtained by substituting the electric field E
into the Maxwell-Bloch equations and truncating to third
order [7]. The complex coefficients A and A4 can be ex-
pressed in terms of the atomic inversion and decay rates,
the detuning, and a convolution between the pumping
profile and the spatial part of the modes. (The explicit
form of these coefficients can be found in the Appendix).
Note that the complex parameter € (which carries infor-
mation about the asymmetries in the laser parameters,
such as anisotropies in the pumping or in the Brewster
windows [4]) accounts for the breaking of the O(2) sym-
metry (see Appendix). As the equations remain invariant
under the operation z,«<>z,, they preserve a Z, symme-
try. i )

We substitute z; =pie'¢f, e=peel¢‘, and A=p+iQ, in
Egs. (2) and (3). After scaling by 4 "=Re( 4) we arrive at
the following system:

pi=up1—(pi+203)p1Fpcprcos(8+9,) , 4)

Py=up,— (201 +p3)py+pcpy cos(B—9,) (5)

8 =a(pi—p3)—plpi/psin(8—¢.)+p,/p;sin(5 t+éJ],
©6)

and a fourth equation for the evolution of the phase ¢,
which is uncoupled from these three equations. The vari-
able §=¢,—¢, is the phase difference between the two
modes. Notice that its dynamic is nontrivial because the
broken-symmetry term couples this phase difference with
the mode amplitudes. (For simplicity, we use the same
notation for the rescaled parameters). The information
about the curvature, detuning, etc., contained in A4
remains in the coefficient a= A4/ A4".

The primary bifurcations from zero in equations
(4)-(6) are four stationary solutions: two standing waves
SW, (p;=p,,0=0), SW_ (p;=p,,8=m) and two solu-
tions, which are a mixture between traveling waves and
standing waves TW, (p,>p,,6>0), TW, (p;<p,,6<0).
These solutions give four stationary patterns their stabili-
ty depending on the parameter settings. By an appropri-
ate selection of the parameters in this situation a good
qualitative agreement with a previous experiment has
been obtained [3].

III. TAKENS-BOGDANOYV BIFURCATION

In this paper the attention is focused in investigating
the secondary bifurcations from the standing wave and
on the new dynamics arising from the nonlinear interac-
tion between those secondary solutions. Before proceed-
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FIG. 1. Sketch of the change of variables (7) performed in
Egs. (4)—(6). In these variables the dynamics of interest takes
place near the (8,¢) plane (center manifold).

ing with the stability analysis it is convenient to perform
the following change of variables:

pi1=B cos(¢/2), p,=Bsin(¢/2), %)

because the B direction is decoupled from the (¢,8) plane
in this representation (Fig. 1). The standing-wave solu-
tions are simply SW,, :

+p_cos
Bé,ﬂ_:zﬂ p€3 ¢€

A linear stability analysis around these solutions leads
to the following eigenvalues. In the B direction the ei-
genvalue is simply —2[utp.cos(¢.)], where the + corre-
spond to the SW, _solutions, respectively. The eigenval-
ues corresponding to the ($,8) plane are obtained from
the following matrix:

sy bo=m/2, 8 ,=0,m .

IuTF ipcosp, +2psing,
2a (8)
—3-( ptp.cosd,)F2psing, F2p,cosd,

Now we determine the conditions for the appearance of a
codimension-two (CT) point.

A. Codimension-two point

The codimension of a bifurcation is the smallest dimen-
sion of a parameter space which contains the bifurcation
in a persistent way. In our case, the CT point is deter-
mined by a degenerated double zero eigenvalue in the ma-
trix (8). This results from the interaction between a
Pitchfork bifurcation and a Hopf bifurcation. [The
Pitchfork bifurcation gives rise to two new solutions
(TW},). The solution resulting form the Hopf bifurca-
tion is the so-called modulated wave (MW).] This CT
point is obtained when the parameters verify

u==x5pccoso, , )
a”'=—tan(2¢,) . (10)

For a given a, and as u >0 (the two modes were born
supercritically), these relations (9) and (10) lead to four
solutions as sketched in Fig. 2. Solutions I and IV are as-
sociated with the SW;, [plus sign in Eq. (9)]:
1=¢%1V=¢2+37/2), while II and II (I=¢2+7/2;
III=¢2+7) correspond to SW_ [minus sign in Eq. (9)].
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FIG. 2. The four possible solutions of the equation system (9)
and (10) (under the condition > 0), where a Takens-Bogdanov
bifurcation takes place. They are shown in the angular ¢, space.
The dynamics around all of them is equivalent.

As Eqgs. (4)-(6) are invariant under the transformation
(desp1(1),p5(2),8(2)) > (P .+ m3p,(8),p5(2),8(8)+ ) (Z,
— residual symmetry), the local dynamics around I and
IIT is equivalent. The same argument can be applied to
solutions II and IV.

For the sake of simplicity, we analyze only the local
behavior around instability I (and IV) in Sec. III B. [Cal-
culations for cases II (and III) follow the same pro-
cedure.]

B. Normal form reduction

Let us recall some general features of a dynamical sys-
tem linearized around a stationary solution. When some
eigenvalues have zero real part, the flow near this fixed
point can be quite complicated. The linear space spanned
by the states corresponding to this null real part eigenval-
ues is known as center eigenspace. The invariant manifold
tangent to the center eigenspace constitutes the center
manifold. The local dynamics ‘““transverse” to this mani-
fold is relatively simple, since it is controlled by the
“fast” variables of the flow. The asymptotic behavior of
the flow develops on the center manifold. The family of
these behaviors that arise in the vicinity of this fixed
point when the parameters are slightly varied is called the
unfolding of the bifurcation. The “simplest” set of equa-
tions that reproduces generically all these behaviors is
called the normal form of the bifurcation.

The unfolding of the bifurcation for solution I (dynam-
ics near SW,)) is described by the normal form

x'=y, (11
y'=ax +by Fx’—x% , (12)

which was first studied by Takens and Bogdanov (TB)
[8,9]. It can show in fact two different behaviors depend-
ing on the choice of the sign +.

Now we show that Eqgs. (4)—(6) reduce to Egs. (11) and
(12) around SW, if the conditions (9) and (10) for solution
I hold. Let us note that in this case ¢°€ (0,7/2) for any
given a [Egs. (9) and (10)]. We perform a last change of
variables:  (B,$,8)—(B,u,8) with u=(p3—p?)/B?
= —cos¢. The equations can be rewritten as follows:

B'=pB—1(3—u?)B*+pB(1—u?)'"?cosp.cosd ,
(13)
u'=u(l—u?)B?

+2p(1—u?)""*(sing sin® —u cos¢, cosd) , (14)

'=aB%u—

Pe . .

m( cos¢ sind +u sing, cosd) . (15)

To obtain the unfolding of the bifurcation we consider,
for small variations of the parameters,

$=¢2+B, t-=5cosgl+q .
Pe
The fast variable B is “enslaved” by the other two vari-
ables and can be adiabatically eliminated after assuming
B’=0. Then the central manifold is two-dimensional and
can be expressed as a function of (u,8). As usual in a lo-
cal stability analysis, we will keep up to third-order
terms. To obtain the normal form [Egs. (11) and (12)],
the following change of variables (u,8)
—(x =1(u/tan(¢2)—8),y = L(u /tan(¢?)+8)) is intro-
duced. This allows us to obtain the right linear part of
the normal form. We can rearrange the equations by
means of another near-identity change on the new vari-
ables (x,y). After these changes the normal form of the
bifurcation reads as

[ (16)
y'=px tuyy +Cx*+Dx?%y , (17)
where
4 1+a tan(¢?)
i3 cos(4?) 9
atan*(¢?)+8a tan(¢?)+7 (18)
tan(¢?) ’
=2 — g +5tan2628 |, (19)
23 cos(#?) ¢
C:%[2—atan(¢2)——3atan3(¢g)] , (20)
D=:6—1[80atan<¢2)+32] : @1)
tan’(¢2)—1
_ tan(g)—1 (22)

2 tan(¢?)

Notice that the coefficients in this normal form mainly
depend on the value of a. As D is always negative the
unfolding of the bifurcation depends mainly on C, which
is a function mainly of a. The unfolding is qualitatively
different when C changes from negative to positive, i.e.,
for the conditions

C=0=tan(¢*)=(5/3)"?=—a, = —cotan(2¢*)=0.258 .
(23)
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(The unfoldings corresponding to C >0 and C <0 will be
described in detail in Sec. IV.) In the Appendix, the
dependence of a on the laser properties is calculated for
different transverse modes. This calculation shows that
the transition point [Eq. (23)] can be reached in a CO,
laser (Fig. 3).

]
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FIG. 3. (a) Plot of the value of a as the curvature s of the
cavity is varied for three different modes: b;=(2,1,0);
¢;=(4,1,0); and b]=(2,1,1). The detuning 8 is fixed: 8=0.
(b) Plot of a on s for the mode b; =(2,1,0), when the detuning
takes the values §=1, =2, and §=3. (c) Plot of a on & for
three modes with different longitudinal behavior:
b,=(2,1,0), b1=(2,1,1), and b} =(2,1,2). (The curvature is
fixed: s =20.) The transition explained in relation (23) is ob-
tained for =0.258. (See Appendix for the notation.)

IV. PATTERN DYNAMICS
IN THE NEIGHBORHOOD OF THE BIFURCATION

In Sec. III we obtained the conditions for the two pos-
sible kinds of TB bifurcation that can take place in the
transverse section of a CO, laser. Depending on the sign
of parameter C, two qualitatively different scenarios are
possible. Now we describe the two different dynamics in
some detail,

a€(—©,0.258)=¢.€(0,0.912) .

This corresponds to the case C >0 (D <0). The un-
folding near the bifurcation is presented in Fig. 4(a).
From this unfolding the following general features are
read. First, the solutions SW, (Fig. 5) as well as the two
TW' (created after a Pitchfork bifurcation from the SW)
are unstable for nearly all the parameter space. The sys-
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FIG. 4. Unfolding diagrams for the two kinds of Takens-
Bogdanov bifurcation [see the normal form (16) and (17)] that
can be achieved: squares=TW), (or TW,,); circles=SW,,.
The outer figures of the diagram are obtained simulating the to-
tal number of equations (4)-(6) far from the instability. (a) For
a<0.258, where C>0,D<0. (b) For a>0.258 where
C <0,D <0.
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™w, swn M|

FIG. 5. Patterns that can be observed: TW, (or TW] if it is
close to SWy); SWy; and TW, (or TW3). The arrows represent
the periodic alternancy TW<>SWy«<TW), that takes place for
C <0. Also possible is another periodic alternancy TW{<—TW};
or TW,«<TW, for C >0.

tem almost always evolves to some of the traveling solu-
tions, TW,=(p,p,,8) or TW,=(p,,p;, —8). So, one of
the conjugate patterns in Fig. 5 would be observed when
we tune the parameter values around the bifurcation
point. Second, the analysis of the full equations (4)—(6)
shows that far away from the bifurcation point a limit cy-
cle appears as a global bifurcation from a heteroclinic
connection between these patterns (TW, ,). This solution
will look like a periodic alternancy between the two
TW, , due to the critical slowing down that takes place in
the neighborhood of these points (Fig. 5).

a€(0.258, 0 )=¢,E :

T
0.912, —
2

In this case C <0 (D <0) and there is a strong change
in the pattern evolution [Fig. 4(b)]. Near the bifurcation
point the SW,, weak oscillations TW' ,<>SW, (quasista-
tionary  patterns)), or a  periodic alternancy
TWi<>SW;TW, will be observed. The latter corre-
sponds to a limit cycle that grows in a global bifurcation
from a homoclinic connection of the SW,. When we go
far away in the parameter space a periodic alternancy be-
tween the two TW), , is found again.

Notice that the frequency associated to the oscillation
between the patterns (Hopf bifurcation from SW) is of
order w’.~lul~pclgl. So it is much slower than the

0sc

temporal scale associated to the modes.

V. CONCLUSIONS

In this article, a model for the evolution of transverse
modes (/ =x1) in a CO, laser has been studied. Due to
the unavoidable anisotropies in the laser setup, some
terms that break the natural O(2) symmetry must be in-
cluded. This model is quite successful in predicting the
stability of the primary solutions SW found in recent ex-
periments. The possible secondary solutions have been
determined.

The symmetry breaking term allows the possibility of a
codimension-two point bifurcating from the SW. This
point appears when secondary solutions from a Pitchfork
and a Hopf bifurcation interact simultaneously at the
same point (Takens-Bogdanov bifurcation). A normal
form reduction procedure allowed us to capture the main
dynamical properties of the system near that bifurcation.

The calculations of the normal form coefficients for
different realistic values in a CO, laser showed that two
possible dynamical scenarios are possible.

The intensity patterns that correspond to the dynami-
cal interaction between these modes (! =+1) have been
described for these two scenarios. Near the bifurcation
one can get stationary patterns (standing waves SW or
traveling waves TW) or oscillations between the SW and
the new conjugate patterns TW'. Far away from the
point bifurcation a global bifurcation of a heteroclinic
connection leads to a periodic alternancy between TW
patterns. These patterns look quasistationary due to a
critical slowing down near the TW solutions.

Remarkably, this “rich” dynamics cannot be observed
without a symmetry-breaking term. It is important to
stress that the interpretation of complicated pattern dy-
namics beyond the particular problem studied here could
lie on simple symmetry considerations.
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APPENDIX

It is clear that the analysis presented in this work
strongly relies on the terms multiplying € in Egs. (2) and
(3). An asymmetry in the pumping profile gives rise to
this linear coupling between the equations for the mode
amplitudes z, and z,. The dependence of € in terms of
laser parameters was derived in Ref. [4]. The result was

Kf
B—iq, (A1)
where K, is the parameter governing the asymmetry in
the pumping profile [K i, =K (r)+2K cos(20)], B is
the rate of decay of the atomic polarization, and (1, is the
slow temporal frequency of the empty cavity mode.

In the following, we compute the value of a=A4'/A4"
for the primary bifurcating modes with angular momen-
tum /==1. It is shown that the transition point
a=0.258 between the two possible TB bifurcations can
be obtained in a CO, laser.

The spatial coordinates of the problem are (r,6,z),
where (r,0) corresponds to the transversal section of the
cavity and z to the longitudinal direction (z&€[—L,0]).
The new coordinates (&, 6,z) are introduced [7]:

2
£= [f ks(s242z2)7 1, (A2)
2R 1/2
s = R , (A3)
L

where s is the effective curvature, L (~ 1m) the cavity
length, R,, the curvature radius of the spherical mirror
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and k =2%L /A is the wave number.
The field is expanded (following [7]) in terms of empty
cavity modes,

<D+
o | 2%

This expansion is introduced in the Maxwell-Bloch equa-
tions (a brief review is done in [4]), and projected on each
mode. The temporal evolution for the cavity mode am-
plitudes z,, is then

a
(A4)

ay

2,=AZa+tMyyp2,225+h00t (A5)

where the expressions of the coefficients A,, M,z are
given in [7] and h.o.t. denotes higher-order terms.
The mode a u =(a ;" ,a ; ) has the functional form

—i¢ il 6 i9, +il,0

a,=(R,(&le Fe "R, (Ele e ). (A6)
The coefficient ¢,,, is given by
with

Q,=n,m+p,arctan | — | =8, (A8)

where (p #,l sl #) are three integers that characterize the
mode; p,=2n,+1,+1 is essentially the total transverse
energy of the laser beam (n, is the radial quantum num-
ber), [ u is the angular momentum around the z axis, and
n, is associated to the longitudinal behavior of the mode.
R (&) is the radial dependence and 8=k mod27 is the
detuning of the cavity. Making the operations indicated
in [7], we obtain the general form,

_KB_
B+

K
B +ay

A= |—x+ 1 ,  (A9)

a

L2
Moyp=F(0,,2, 097 [ [ [KORER)
XR,(E)RG(E)

X[4cos(¢p,+¢,—d,—dp)
+2cos(¢p,—¢,—¢,+¢p)16dEdz dO
(A10)

where the pumping profile K (£)=K is considered con-
stant along the whole beam width and y gives account for
the cavity losses.

After applying these procedures to our two mode in-
teraction model,

z1=Az;— A(z,z} +2z,z3 )z, te€zy , (A11)

zy=Az,— A (22,2} +z,z5 )z, +e€z, , (A12)

we can identify 4 = —M,;;, which, according to expres-
sion (A8), gives

2B 1
BZ+Q% B_iQ]

A :_M““ =const X

[ 6[R (&))*€dE .

(A13)

These calculations have been performed for the primary
bifurcating modes a, =(p,/,n):

b,=(2,1,00>R2(E)~E% ¢, (A14)
¢,=(4,1,00>RH(E)~(2— £ ¢, (A15)
1=(2,1,1) >RHUE)~EE . (A16)

In general, the coefficient a= A4/ A" depends on the
cavity curvature s and on the detuning 6. We plot the
dependency of a on s and 8 for the primary modes in Fig.
3. a decreases when the curvature (or detuning) increases
and the transition value a=0.258 can be reached for a
sufficiently high curvature s.
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