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Stability of hexagonal patterns in Bénard-Marangoni convection
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Hexagonal patterns in Be´nard-Marangoni~BM! convection are studied within the framework of amplitude
equations. Near threshold they can be described with Ginzburg-Landau equations that include spatial quadratic
terms. The planform selection problem between hexagons and rolls is investigated by explicitly calculating the
coefficients of the Ginzburg-Landau equations in terms of the parameters of the fluid. The results are compared
with previous studies and with recent experiments. In particular, steady hexagons that arise near onset can
become unstable as a result of long-wave instabilities. Within weakly nonlinear theory, a two-dimensional
phase equation for long-wave perturbations is derived. This equation allows us to find stability regions for
hexagon patterns in BM convection.
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I. INTRODUCTION

Pattern formation in systems out of equilibrium has b
come an active area of research@1# since the pioneering work
of Bénard a century ago@2#. He observed an array of hex
agonal convective cells in a thin layer of spermaceti hea
from below and open to the atmosphere. The liquid la
becomes unstable by the combined action of thermocapil
~Bénard effect! and buoyancy forces~Rayleigh effect!, an
instability currently known asBénard-Marangoni (BM) con-
vection. Later on the vast majority of studies, either theor
ical or experimental, were made on buoyancy driven conv
tion, which was namedRayleigh-Be´nard (RB) convection.
Nevertheless, thermocapillary stresses may be impor
whenever a thermal gradient acts on a liquid-gas or a liqu
liquid interface, especially in the case of thin layers, quit
common situation in many important technological proces
@3#. BM convection intrinsically involves two fluids, but th
gas can be considered as passive when dealing with a liq
gas interface. In these circumstances the theoretical des
tion can be reduced to the usual one-fluid problem with
wave-number-dependent thermal exchange parameter~Biot
number! @4#. From the experimental angle this approxim
tion is ensured by thinning the gas gap between the liq
and a cover sapphire lid as much as possible@5–7#. Convec-
tive thresholds obtained using this coefficient fit the expe
mental values quite well and extend earlier theoretical res
@8#.

Several theoretical works have been devoted to the n
linear analysis of BM convection@9–18#. The weakly non-
linear analysis, studying the relative stability of the differe
planforms, has been addressed both for pure Marangoni
vection ~no buoyancy! @11–13#, as well as for the genera
BM case@15#. Some of these results are in good agreem
with full numerical simulations of the basic hydrodynam
equations@14#. The general case, including the stability
arbitrary perturbations, was studied by Bestehorn@16#. How-
ever, an explicit derivation of theGinzburg-Landau equa
tions ~GLE!, including spatial terms, has only been done
1063-651X/2001/63~6!/066307~13!/$20.00 63 0663
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pure Marangoni convection@17,18#. Here we extend these
results to the case when both buoyancy and surface-ten
effects are present. We will focus on the stability of hex
gons as the different parameters in the fluid are varied. S
bility analyses are performed by splitting perturbations
amplitude and phase components. We will show that the
plitude stability curves obtained previously in Refs.@12–15#
are modified by the spatial terms. An explicit two
dimensional~2D! phase equationcan be derived analytically
from the GLE@19–21#, thus giving insight into the physica
origin of long-wave instabilities for hexagons. In this pap
we compute the coefficients in the phase equation, wh
allows us to complete the stability diagrams for BM conve
tion.

The paper is organized as follows. In Sec. II we rec
briefly the basic equations and boundary conditions~bc!, and
the linear stability analysis of BM convection. Section III
devoted to determining the amplitude equations. We first d
cuss the normal form with its coefficients, and, second,
calculate the linear and quadratic gradient terms. The am
tude instabilities are analyzed in Sec. IV. Section V discus
the phase equation and the stability regions for BM conv
tion. Finally, Sec. VI contains a brief summary of the resu
and comparison with related work. For the sake of clar
we have placed some specific calculations in two Appen
ces.

II. EVOLUTION EQUATIONS FOR BM CONVECTION

We consider a horizontal liquid layer of depthd heated
from below and open to the atmosphere, under a tempera
differenceDT. In recent experiments a good thermal regu
tion is achieved by keeping the thin air layer in contact w
a sapphire plate with a thermostatic bath@5–7#. From the
difference between the heating plate and this bath, the t
perature difference across the liquid layerDT can be inferred
and the thermal exchanges between the liquid and the
quantified. Not far from threshold, air can be assumed to
a passive medium@4#, so we can deal with the one-flui
©2001 The American Physical Society07-1
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B. ECHEBARRIA AND C. PÉREZ-GARCÍA PHYSICAL REVIEW E 63 066307
model. Those experiments have been performed in con
tive cells with a horizontal lengthL@d, so that an infinitely
extended layer can be assumed for calculations@1#. ~Quanti-
tative but not qualitative differences between theoretical
experimental results would appear for such big aspect rat!

Within the Boussinesq approximation and using the st
dard notation, the equations governing the problem
pressed in rescaled nondimensional variables~obtained di-
viding space, time, velocity, and temperature byd, d2/k,
k/d, andDT, respectively! read as

Pr21F]v

]t
1~v•“ !vG52“p1Rauez1“

2v, ~1!

]u

]t
1~v•“ !u5“

2u, ~2!

“•v50, ~3!

where buoyancy effects are characterized by the Rayle
number Ra5agd3DT/nk and Pr5n/k stands for the
Prandtl number. For the usual silicon oils used in expe
ments Pr'100, so we can take Pr2150 as a reference valu
in the following. High Pr numbers mean that the dynamics
ruled by the temperature field and the mean flow effects
negligible.

Experiments on BM convection are most frequently p
formed with a rigid, heat-conducting lower plate~copper,
aluminum, silicon!. We will therefore consider the bc

v50, T5Tb , at z50. ~4!

The liquid-air interface is assumed to be undeformable, p
tially conducting and with a temperature-dependent surf
tension:

w5]zu1Bi u5]z
2w1Ma“h

2u50, atz51, ~5!

where Bi ~Biot number! accounts for the heat transfe
through the interface. In general, Bi is a spatially depend
parameter but, for simplicity, we will take a constant refe
ence value Bi50.1 typical in experiments. For very thin lay
ers (d,0.3 mm) surface deformations can become imp
tant, giving rise to a longwavelength instability of the fl
interface@22#. In the usual BM experiments, however, th
thickness of the fluid layer is at least of the order of t
millimeter and the surface deformation is negligible. Th
mocapillary effects are quantified by means of the M
rangoni number Ma5gdDT/rnk, related with Ra through a
constantG5Ma/Ra5g/ragd2 that depends on the chara
teristics of the fluid and on the liquid depthd. The limit G
→0 corresponds to RB convection, while pure Marang
convection (G→`) is reached when gravitational forces a
absent or the layer thickness is very small (Ra;d2 Ma). We
are interested in studying the stability of hexagon pattern
this parameterG is varied.

Below a critical value of the temperature difference acr
the layer, the fluid remains in a conductive state:

vcond50, Tcond52z1Tb . ~6!
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Perturbations around this statev5v, u5T2Tcond, p5p
2pcond satisfy

Pr21F]v

]t
1~v•“ !vG52“p1Rauez1“

2v, ~7!

]u

]t
1~v•“ !u5w1“

2u, ~8!

“•v50, ~9!

with the boundary conditions~bc!:

v50, u50, atz50, ~10!

]z
2w1Ma“h

2u5]zu1Bi u5w50, atz51. ~11!

It is possible to write Eqs.~1!–~3! in a more compact form:

Lf 5N~ f !, ~12!

where f 5(v,u,p) denotes the eigenfunctions andL the lin-
ear operator, defined as

L5S “

2 Raez 2“

ez “

2 0

“ 0 0
D , ~13!

andN stands for the nonlinear terms:

N~ f !5S Pr21@] tv1~v•“ !v#

] tu1~v•“ !u

0
D . ~14!

Linear stability analysis

We use the growth rate as the eigenvalue for the lin
operator@15#, so that

S “

2 Raez 2“

ez “

2 0

“ 0 0
D S v

u

p
D 5sS Pr21 0 0

0 1 0

0 0 0
D S v

u

p
D .

~15!

Solutions of these equations are expanded in terms of no
modes:

~vg ,ug ,pg!5@Ug
k~z!,Vg

k~z!,Wg
k~z!,Qg

k~z!,Pg
k~z!#eik•x,

~16!

whereWg
k(z) andQg

k(z) satisfy

~D22k2!2Wg
k2Rak2Qg

k5Pr21sg
k~D22k2!Wg

k , ~17!

~D22k2!Qg
k1Wg

k5sg
kQg

k , ~18!

with the bc

Wg
k~0!5DWg

k~0!5Wg
k~1!50, ~19!
7-2
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Qg
k~0!5DQg

k~1!1Bi Qg
k~1!5D2Wg

k~1!1Mak2Qg
k~1!50.

~20!

~Notice that the singular limitk→0 must be considered apa
@15#. We present this case in Appendix A!. For each value of
k there is a discrete set of vertical eigenfunctions that
indexed with the subscriptg. The conditions50 fixes the
marginal curve Ma5Ma(k;Pr,Bi,G). The minimum of this
curve gives the critical Marangoni and wave numb
(Mac ,kc) at the onset of convection. Let us recall that t
critical values Rac and Mac lay approximately on the line
Mac /Ma0c1Rac /Ra0c51 ~Nield’s relation @8#! whereM0c
(Ra0c) is the critical value of Ma~Ra! in the limit Ra50
(Ma50). Typical values for small Bi are Ma0c'80 and
Ra0c'670.

In the literature two main criteria have been used to d
cern whether buoyancy or thermocapillary effects are do
nant: ~a! Mac.Rac @23#, equivalent toG>1 @ tan21(G)
'45°#, and ~b! Mac.(Ma0c /Ra0c)Rac @3#, equivalent toG
>Ma0c /Ra0c'0.12 @ tan21(G)'7°#, for Bi50. The first
criterion is quite restrictive and should be considered as
lower limit of a Marangoni-dominated instability, while th
second can be viewed as the upper limit under which
buoyancy effects are dominant. For typical liquids@24# G
50.08d2(cm), so that the Marangoni effect is dominant f
d,3 mm and the buoyancy effect ford.8 mm.

Before closing this section let us mention that the line
operatorL is not self-adjoint. Therefore, the adjoint must
calculated for a subsequent nonlinear analysis. It is defi
by the relationship:

^ f * ,Lcf &5^ f ,Lc* f * & ~21!

in which the scalar product̂& is defined by:

^a,b&5E
V
ābdV5 lim

L→`

1

4L2E2L

L E
2L

L E
0

1

ābdz dx dy.

~22!

The form of L* and f * 5(v* ,p* ,u* ) are deduced in Ap-
pendix A.

III. AMPLITUDE EQUATIONS FOR BM CONVECTION

In this section we perform a weakly nonlinear analysis
the hexagon planform observed in BM experiments. W
therefore examine the stability of a hexagonc}A1eik1•x

1A2eik2•x1A3eik3•x1c.c. made up of three modes linked b
the resonance conditionk11k21k350. It is worth mention-
ing that symmetry arguments are sufficient to determine
normal form for the amplitudesAi @25#

t0] tA15eA11aĀ2Ā32g1uA1u2A12g2~ uA2u21uA3u2!A1 ,

~23!

in which e stands for the distance to threshold~in our case
e[(M2Mc)/Mc5(R2Rc)/Rc) and the coefficients
t0 ,a,g1 andg2 depend on the particular problem under co
sideration.~The equations forA2 , A3 are obtained by cyclic
permutation of the indices!.
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A. Normal forms and amplitude equations

The coefficients in Eq.~23! can be obtained from the
basic hydrodynamic equations by means of aGalerkin ex-
pansion @15#. We recall briefly the main steps of the th
technique. First Eq.~12! is projected over the adjoint mode
so the linear part becomes:

K ~v* ,u* ,p* !LS v

u

p
D L 5K ~v* ,u* ,p* !skS Pr21v

u

0
D L

5sk^Pr21v* •v1u* u&, ~24!

and the nonlinear term gives

K ~v* ,u* ,p* !S Pr21~] tv1~v•“ !v!

] tu1~v•“ !u

0
D L

5] t^Pr21v* •v1u* u&1Pr21^v* •@~v•“ !v#&

1^u* ~v•“ !u&. ~25!

Second, the fields are expanded in series of the linear ei
functions (vg

ki ,ug
ki) with time-dependent amplitude coeffi

cients@26#

S v

u D 5(
i ,g

Ag
ki~ t !S vg

ki

ug
ki D . ~26!

Third, the vertical component and the wave numb
dependent planar part are expanded separately in Eqs.~7!–
~9! and the following hierarchy of equations is obtained:

] tAg
ki5sg

kiAg
ki1(

nr
(
j l

Bgnr~ki ,kj ,kl !An
kjAr

kl , ~27!

where the coefficientsBgnr(ki ,kj ,kl) depend on the inte-
grals:

Bgnr~ki ,kj ,kl !

5
~Pr21^vg

ki*
•@~vn

kj
•“ !vr

kl#&1^ug

ki* ~vn
kj
•“ !ur

kl&!

^Pr21v
g

ki*
•vg

ki1u
g

ki* ug
ki&

~28!

~see Appendix B!. Near onset the growth rates can be ex-
panded ass.01(]s/]e)e[t0

21e. ~An explicit expression
for t0 can be found in Appendix A 3.!

Finally, let us mention that the Galerkin method becom
useful if the infinite set~27! can be truncated at a suitab
order. The expansion~26! involves the marginal mode
~drawn by full arrows in Fig. 1!, as well as higher harmonic
~dashed arrows in the same figure!. The latter are damped
modes (s(ku)!0) and can be eliminated adiabatically. U
to cubic order in the amplitude equations only the first h
monics of the marginal modes must be considered. Besi
7-3
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we have taken three vertical eigenmodes, which is enoug
ensure a good convergence. Then the bifurcation prob
reduces to Eq.~23!, with the identificationA1[A1

k1 ,A2

[A1
k2 ,A3[A1

k3. ~Explicit expressions for nonlinear coeffi
cients in the normal form can be found in Appendix B.! The
values of the coefficients in Eq.~23! are given in Table I for
pure Marangoni convection (Ra50), an insulating interface
(Bi50), and keepingg1(Pr2150)51.

B. Spatial terms: The generalized Ginzburg-Landau equation
for hexagons

The stability analysis with respect to inhomogeneous p
turbations requires the addition of spatial terms to Eq.~23!.
Off-critical wave numbersk5kc1q accounting for slight
modulations of a perfect pattern change the coefficients
Eq. ~23!. One can handle these changes by expanding
coefficients in Taylor series ofq, performing the calculations
and coming back to real space throughq→ i“.

The linear spatial term is easily obtained from the grow
rates(k2,e)5@e2j0

2(k22kc
2)2/4kc

2#, j0
25]2e/(2]k2)ukc

be-

ing the correlation length. To lowest order (k22kc
2)2

.4kc
2(n̂•q)2, which in real space becomes the usual dif

sive linear termj0
2(n̂•“)2. The values ofj0

2 as a function of
G are gathered in Table II . It is worth noticing thatj0

2 does
not change significantly whenG is varied.

For a pattern of rolls this is the only spatial contribution
the GLE. However, nonlinear gradient terms of the fo
A“A ought to be included for a subcritical bifurcation,
has been remarked recently by several authors@27–29#.
These terms are found after replacing sums by integrals
expanding coefficientsB in Eq. ~28! in series ofq and fol-

FIG. 1. Stable and unstable modes.

TABLE I. Coefficients of the amplitude equations for Ra50
and Bi50, takingg1(Pr2150)51.

t0 a

0.16710.0427 Pr21 0.29320.0666 Pr21

g1 g2

110.284 Pr2110.0289 Pr22 1.3510.450 Pr2110.03009 Pr22
06630
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lowing a procedure similar to that for the linear term.~De-
tailed calculations are given in Appendix B.! Finally, the
generalized GLE is obtained

t0] tA15eA11j0
2~ n̂1•“ !2A11a0Ā2Ā32g1uA1u2A1

2g2~ uA2u21uA3u2!A11 ia1@Ā2~ n̂3•“ !Ā3

1Ā3~ n̂2•“ !Ā2#1 ia2@Ā2~ t̂3•“ !Ā3

2Ā3~ t̂2•“ !Ā2#, ~29!

where n̂i and t̂i stand for unit vectors parallel and perpe
dicular to the wave numbers~see Fig. 2! anda1 anda2 are
real coefficients given by

a15S ]a

]k2
1

1

2

]a

]k1
D , a25

A3

2

]a

]k1
, ~30!

where a(k1 ,k2 ,k3)5t0B111(k1 ,k2 ,k3) ~see Appendix B!.
The terms witha1 and a2 render the system nonpotenti
@27# and correspond todilatations and distortions of the
hexagons, respectively. A sketch of their action in Four
space is drawn in Fig. 3.

The values ofa1 anda2 as functions ofG are displayed
in Fig. 4. As expected, botha0 anda1 vanish for buoyancy-
driven convection (G→0), the bifurcation becoming then
supercritical. However,a2 remains different from zero@29#.
In other ranges ofG, a1 anda2 are of the same order asa0.
The values of the coefficientsa i do not vary much in the
Marangoni-dominated regime, i.e, for tan21(G).45°.

In Table III our values fora1 anda2 are compared with
those found by other authors for Ra50 @17,18#. We have
taken the same set of parameters as in Ref.@17#, but the
method used to derive the amplitude equations is differe
We find a disagreement of about a factor of 4 between
two papers, although the sign of the coefficients coincide

FIG. 2. Unit vectors:n̂i parallel andt̂i perpendicular to the
wave numbers of the hexagonal lattice.

TABLE II. Values of j0
2 as a function ofG for Bi50.1.

G 0 tan(10°) tan(20°) tan(40°) tan(70°) tan(90°

j0
2 0.279 0.274 0.284 0.285 0.282 0.274
7-4
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Ref. @18# the two-fluid problem is analyzed for the cond
tions in two experiments~Ref. @22# in case~a! and Ref.@30#
in case~b!! and then the comparison with our results is le
straightforward. Nevertheless, we think that the conditio
are rather similar to ours~except perhaps for Bi!. The values
almost coincide, the main difference being the sign ofa1.
We will discuss this disagreement in the final section.

Once all the coefficients in Eq.~29! have been calculated
we address the stability of the stationary solutions.

IV. AMPLITUDE INSTABILITIES

The bifurcation diagram of BM convection under hom
geneous perturbations is well known. Here we extend it
cluding slightly off-critical wave numbers in the amplitude
Ai5Ai expiqi•x, so that solutions of Eq.~29! are easily
found. These are~a! rolls A15R,A25A350, with R
5A(e2j0

2q2)/g1 and hexagonsA15A25A35H with H
given by

H5
a8~q!6Aa8~q!214~e2j0

2q2!~g112g2!

2~g112g2!
, ~31!

in which a8(q)5a012qa1 and the sign1(2) corresponds
to up~down!-hexagons with up~down!-flow motions in the
center. The conditiona1.0 is ensured in BM convection
~Fig. 4!, so a8(q) normally remains positive, and therefo
only upflow hexagons (H.0) are stable. Mixed modes o
the form A15r 1 ,A25A35r 2 are also solutions, but the
are linearly unstable with respect to hexagons or rolls.

FIG. 3. ~a! Dilatations and~b! distortions in a hexagonal pattern

FIG. 4. Coefficientsa0 ,a1, and a2 as functions ofG (Pr21

50, Bi50.1, andg151).
06630
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A linear stability analysis with respect to homogeneo
perturbations~amplitude instabilities! in the form ~a! Ai
5H(11r i) for hexagons and~b! A15R(11r 1), A2,35r 2,3
for rolls, is easily performed. Hexagons turn out to be sta
if the following conditions

u5H2~g12g2!1a8~q!H.0, ~32!

v52H2~g112g2!2a8~q!H.0, ~33!

are satisfied. Similarly the stability of rolls is limited by th
curve

m5R2~g12g2!1a8~q!R,0. ~34!

Hexagons are then stable in the region

es~q!52
a82~q!

4~g112g2!
1j0

2q2,e

,eh~q!

5
a82~q!~g212g1!

~g22g1!2
1j0

2q2, ~35!

and rolls for

e.e r~q!5
a82~q!g1

~g22g1!2
1j0

2q2. ~36!

~Notice that these expressions do not containa2 since only
perfect equilateral hexagons have been considered.! A sketch
of the bifurcation diagram for fixedq is shown in Fig. 5.

In Fig. 6 we representes , e r , andeh as functions ofG for
q50. These curves do not vary much for tan21G>30° ~i.e.,
in the Marangoni-dominated regime!, but they steeply de-
scend for tan21G,30°. In the limit tan21G→0 they vanish,
rolls then becoming the only stable pattern as predicted
RB convection. A similar behavior was obtained for coef
cientsa i ~see Fig. 4!. The curves in Fig. 6 do not display
sudden threshold from a Rayleigh to a Marangoni-domina
regime, since the main changes are produced between
two limits discussed above.

The variation ofes , e r , and eh with Pr for Ra50 and
Bi50 is gathered in Fig. 7. We have taken the eigenfu
tions for Pr2150, so our results are not expected to be va

TABLE III. Values of a1 and a2 in different papers for pure
Marangoni convection (Ra50), with the normalizationj0

251, a0

51. ~In the present paper and in Ref.@17# the value Bi50 is cho-
sen.!

Reference a1 a2 Pr

Bragard and Velardea 1.213 24.4149 `

Golovin et al. b ~a! 20.4622 21.0832 913
~b! 20.5572 21.3057 100

This paper 0.3229 21.079 `

aReference@17#.
bReference@18#.
7-5
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for Pr!1. However, even for rather small Pr they are simi
to those obtained by several authors using other meth
@31,32#. In particular they noticed that the quadratic coef
cient a changes sign, inducing a transition from up to dow
hexagons for Prc;0.23 @31,32#, in complete agreement with
the value Prc50.227 in our calculation. Notice that thresho
values in Fig. 7 do not vary appreciably for Pr.5, so that we
do not expect qualitative changes for sufficiently high
Nevertheless we must mention that mean-flow effects
come more important as Pr is decreased. These enter int
description through a pair of coupled amplitude equatio
the derivation of which is rather involved@1#.

A comparison with previous works@13,15,17# for the set
of parameters Ra50, Pr2150, Bi50, andq50 is gathered
in Table IV. Obviously the best agreement is with Ref.@15#
because we used the same method to obtain the coeffic
~although we take slightly different eigenfunctions!.

Hexagons have been observed to be replaced by squ
in recent BM experiments@37,38#. Numerical simulations
@39# confirmed also that this transition is possible fore'3 in
liquids with Pr'100, in rather good agreement with expe
mental data. Other theoretical studies@40# have shown such
a transition by increasing Bi but beyond the value estima
from experiments. In principle the perturbative calculatio
in the present paper could be extended to include desta
zation of hexagons by squares. But an agreement with
periments is not hoped to be achieved unless finite-Pr eff

FIG. 5. Bifurcation diagram. Solid lines indicate stable solutio
and dotted ones unstable.
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and a full two-layer system would be considered. Obviou
these two facts will render calculations much more cumb
some. For example, the second effect has been taken
account by means of the amplitude equations for two-la
BM convection in a recent article@41#. In this case, hexagon
are replaced by squares but fore.1, i.e, outside the validity
of the perturbation approach@41#.

V. PHASE INSTABILITIES

Another kind of destabilizing perturbation is in the for
to long-wave modulations whose dynamics is governed b
phase equation. The relevance of this equation for rolls w
soon noticed@26#, but it took somewhat longer to determin
it for hexagons@33,19–21#. In the framework of the ampli-
tude equations~but for a15a250) the phase equation fo
hexagons was obtained in@19–21#. Other authors have stud
ied the influence of the quadratic spatial terms on the disp
sion relation associated with Eq.~29! (a1 ,a2Þ0) @17,34#.
For this general case an explicit derivation of the phase eq
tion with coefficients computed analytically can be found
Ref. @35#.

Assuming perturbations of Eq.~29! in the form Ai
5H(11r i1 if i), with r i the amplitude andf i the phase of
the perturbation and linearizing, we arrive at the system

TABLE IV. Comparison among the values ofes , e r , andeh for
pure Marangoni convection (G5`), with Pr2150 and Bi50.

Reference es(%) e r eh

Bragard and Lebona 20.56 0.53 1.8
Thess and Orszagb 20.75
Parmetieret al. c 20.58 0.71 2.37
Bragard and Velarded 20.57 0.64 2.16
This paper 20.58 0.70 2.34

aReference@13#.
bReference@14#.
cReference@15#.
dReference@17#.
FIG. 6. Values ofes , e r , andeh as functions of tan21(G) (Pr2150 and Bi50.1).
7-6
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FIG. 7. Dependence ofes , e r , andeh on Pr for Ra50 and Bi50.
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t0] tr 15j0
2]1

2r 122qj0
2]1f11a8~q!H~r 21r 32r 1!1H

3S a11
a2

A3
D ~]2f21]3f3!1a2H~]3f21]3f3!

22g1H2r 122g2H2~r 21r 3!, ~37!

t0] tf152qj0
2]1r 11j0

2]1
2f12a8~q!H~f11f21f3!

1HS a11
a2

A3
D ~]2r 21]3r 3!1

2

A3
a2H

3~]2r 31]3r 2!, ~38!

where the notation] i5n̂i•“ is used. The amplitudesr i and
the global phaseF5f11f21f3 are strongly damped
modes and can be eliminated adiabatically. As a result,
dynamics are dominated by two phase modes. Instea
using f2 and f3 we deal with fx52(f21f3), fy

51/A3(f22f3), that are related to the two translation
symmetries in thex andy directions, respectively. The fina
equation reads as

] tfW 5Dt“
2fW 1~Dl2Dt!“~“•fW !, ~39!

where the diffusion coefficientsDt andDl are analogous to
the velocity of transversal and longitudinal sound waves
an isotropic solid, respectively.

This equation can be formally obtained just by symme
arguments and therefore it is valid even far from ons
Moreover, it can be extended to include nonlinear terms@21#.
But the coefficients are difficult to calculate unless the a
plitude equation is used. In this framework Eq.~29! leads to
the analytical expressions@35#:

Dt5
1

4
2

q2

2u
1

H2

8u
~a12A3a2!2, ~40!
06630
e
of

n

y
t.

-

Dl5
3

4
2

q2~4u1v !

2uv
1

H2

8u
~a12A3a2!22

H2a1

v
~a1

1A3a2!1
Hq

v
~3a11A3a2!, ~41!

whereu50 andv50 are defined in Eqs.~32!,~33!.
Using the analogy with sound waves we split the phasefW

into a longitudinalfW l and a transversalfW t part, satisfying
“3fW l50 ~rhombic distortions! and“•fW t50 ~rectangular
distortions!. These components satisfy

] tfW l5Dl“
2fW l , ] tfW t5Dt“

2fW t . ~42!

Therefore the system is stable to phase perturbations
vided thatDt.0 andDl.0. It should be noted, however
that these conditions do not necessarily give the right sta
ity limits. ~In fact, it has been shown that oscillatory, as w
as shortwave instabilities can appear under some specia
cumstances@36#.! In order to ensure that the correct stabili
limits are obtained, we solve also the full 636 dispersion
relation corresponding to Eq.~29!. In Fig. 8 we show the
phase stability diagrams for several values ofG, as well as
the results from the dispersion relation~circles!. For the sake
of comparison the amplitude stability curvesu50 ~lower
dotted curve! andv50 ~higher dotted curve!, together with
the roll amplitude limitm50 ~dashed-dotted middle line!
have been included. Figure 8~a!, which corresponds to
buoyancy-dominated convection, shows a small, alm
symmetric stability region. This becomes big and asymm
ric in Figs. 8~b!–8~d!, in the Marangoni-dominated regime
This behavior is in agreement with the variations ine i anda i
seen in Figs. 4 and 6. Those stability regions are bent to
right, mainly owing to the positive sign ofa1. A similar
bend is observed in numerical calculations@16,17#, a fact
related apparently to a wave number growth when Ma
creases@5#.
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FIG. 8. Phase stability diagram for~a! G50.05, ~b! G5tan(20°),~c! G5tan(70°), and~d! G5tan(90°) (Pr2150, Bi50.1).
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VI. CONCLUSIONS

In this paper we have studied the instabilities of hexa
nal patterns in BM convection, in the weakly nonlinear r
gime. We have obtained generalized Ginzburg-Landau eq
tions governing the slow dynamics of hexagon amplitud
near onset, which include spatial nonlinear terms. We h
computed the coefficients of the nonlinear gradient ter
showing that the three coefficientsa i are of the same order
their value remaining almost constant~like the thresholde i)
when the liquid depth is varied in the Marangoni-domina
regime.

The stability analysis of the spatially homogeneous cas
in good agreement with previous theoretical resu
@12,13,15#. From Fig. 6 we can conclude that the thresho
valueses ,e r ,eh do not depend so much on the liquid dep
in the Marangoni regime, their changes becoming signific
for thick layers~buoyancy-dominated regime!. A comparison
with experiments@7# is not yet easy. With the data obtaine
so far onlyec could be compared, but its tiny value might b
influenced by finite-size effects.~A experimental setup mea
suring the Nusselt number would permit a full quantitati
comparison.!

The new spatial terms modify slightly theamplitude sta-
06630
-
-
a-
s
e

s,

d

is
s

nt

bility curves~see Fig. 8!. These curves describe a transitio
between hexagons and rolls. Experimentally, however
change of hexagons into squares has been reported by
groups@37,38# for values ofe5Ma2Mac /Mac>3. A simi-
lar value is obtained by direct numerical simulations of h
drodynamic equations@39#. Although our analysis could be
extended to account for a transition to squares, the co
sponding values would lie outside the validity of a perturb
tive approach.

But the main contribution of the coefficientsa i becomes
apparent when dealing with long-wave perturbations. We
rive a phase equationfor hexagons and calculate its coeffi
cients in an analytical form. This equation allows us to d
termine phase-stable regions that fit qualitatively with tho
computed numerically by other authors@16,17#.

In particular we have shown that the phase-stability
gions do not change qualitatively by increasingG within the
Marangoni-dominated regime, in agreement with numeri
calculations in Ref.@16#. This suggests that the long-wav
dynamics of hexagonal patterns can be studied even in r
tively thick liquid layers (d<8 mm for typical fluids!.

Finally, let us mention that the perturbations considered
this paper seem to be the most dangerous for a hexag
7-8
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STABILITY OF HEXAGONAL PATTERNS IN BÉNARD- . . . PHYSICAL REVIEW E 63 066307
pattern, described by amplitude equations@28#. Although the
stability diagrams derived with this formalism have a limit
range of validity we hope that they will suggest further e
periments on thresholds, transitions, and sideband insta
ties of hexagon patterns in BM convection.
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APPENDIX A: LINEAR BM INSTABILITY

1. Linear adjoint operator

In this Appendix we complete the calculations sketched
Sec. II A. Let us recall that the linear problem can be writt
as

S “

2 Raez 2“

ez “

2 0

“ 0 0
D S v

u

p
D 5sS Pr21 0 0

0 1 0

0 0 0
D S v

u

p
D .

~A1!

Using the scalar product in Eq.~2.1! and the condition for
the adjoint operator̂f * ,Lcf &5^ f ,Lc* f * & we obtain

L* 5S “

2 ez 2“

Racez “

2 0

“ 0 0
D , ~A2!

with the bc

u* 5v* 5w* 5u* 50, atz50, ~A3!

]zu* 1Bi u* 1Mac~]xu* 1]yv* !50,

]zu* 5]zv* 5w* 50, atz51, ~A4!

where f * 5(v* ,p* ,u* ) are the adjoint eigenfunctions. Ex
panding the fields into normal modes (v* ,u* ,p* )
5@k2Vg

k* (z),Qg
k* (z),Pg

k* (z)#eik•x the former system be
comes

~D22k2!2Wg
k* 2Qg

k* 5Pr21sg
k* ~D22k2!Wg

k* , ~A5!

~D22k2!Qg
k* 1Rack

2Wg
k* 5sg

k* Qg
k* , ~A6!

with the bc

Qg
k* ~0!5DQg

k* ~1!1BiQg
k* ~1!2Mack

2DWg
k* ~1!50,

~A7!

Wg
k* ~0!5DWg

k* ~0!5Wg
k* ~1!5D2Wg

k* ~1!50. ~A8!
06630
-
ili-

-

n

The corresponding eigenvalue problem satisfies the r
tion s̄g

k* 5sg
k , from which it is easy to derive the orthogo

nality condition:

^Pr21v
g

ki*
•vr

kj1u
g

ki* ur
kj&50 if gÞr or kiÞkj . ~A9!

The adjoint eigenfunctions are solutions of the system~A5!–
~A8!. They will be used in computing the coefficients in th
amplitude equations.

2. EigenmodekÄ0

As discussed in Ref.@15#, the limit k→0 in Eqs.~17! and
~18! is singular, so it must be computed separately. Set
k50, Eqs.~17! and ~18! become

D4W5sD2W, ~A10!

~s2D2!Q5W, ~A11!

with the bc ~19! and ~20! for k50. The solution of this
system is

Wg~z![0, Qg~z!5sinA2sgz, ~A12!

where sg satisfiesA2sg cosA2sg52Bi sinA2sg. For
Bi50, sg52(g11/2)2p2.

3. Linear coefficients in the normal form

The linear analysis is completed by giving an explicit e
pression for the relaxation timet0 and the correlation length
j0

2. These are found by expanding the growth rates in terms
of k2 ande[(Ma2Mac)/Mac5(Ra2Rac)/Rac . After using
s(kc ,e50)5]s/]k2uk5kc

50, and

]2s

]~k2!2U
k5kc

52
]s

]e U
e50

]2e

]~k2!2U
s50

one arrives at the expression

s~k2,e!5
]s

]e U
e50

F e2
]2e

]~k2!2U
s50

~k22kc
2!2G

5t0
21F e2

j0
2

4kc
2 ~k22kc

2!2G , ~A13!

with t0 andj0
2 given by

t0
21[

]s

]e U
e50

, j0
2[

1

2

]2e

]k2U
k5kc

. ~A14!

Taking into account thatk5ukc1qu, then (k22kc
2)2

54kc
2(n̂•q1q2/2kc)

2 and transforming back to real spac
this term becomes

j0
2S n̂•“2

i“2

2kc
D 2

, ~A15!
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which is the rotationally invariant linear spatial term introduced by Gunaratneet al @28#. In the case of hexagons the term wi
the Laplacian can be neglected due to the resonant interaction@18#.

After projection of Eq.~A1! over the adjoint modes and integrating by parts,u*“2u. we obtain fors

s5
^u* w&1^“2u* u&2Ma^]zw* u&z512^~v* •“ !p&1Râ w* u&1^v* •“2v&

^uuu2&1Pr21^uvu2&
. ~A16!
e
ex

n

as

ti-
Close to onset Ma5Mac(11e), Ra5Rac(11e) so, finally
we arrive at a useful, explicit expression fort0

t0
215

Rackc
2E

0

1

W* Qdz2Mackc
2DW* ~1!Q~1!

E
0

1

@ uQu21Pr21~ uDWu21kc
2uWu2!#

.

~A17!

APPENDIX B: NONLINEAR TERMS IN THE AMPLITUDE
EQUATIONS

Considering the fieldsc5@v,u,p# we can sketch Eqs.~9!
in a compact form

] tc5L~R,“ !c1N~c!, ~B1!

whereN(c) is a quadratic nonlinearity. Close to onset w
consider horizontal slow spatial variations through the
pansion c(x,z,t)5(g,ki

Ag
ki(x,t)fg

kc(z)eikc•x. Moreover, in
Fourier space, the planform is composed of finite regio
around perfect peaks (k5kc1q), so that we can take

Ag
ki~x,t !5E

q.0
ag

qi~ t !eiqi"xdq, ~B2!

and therefore we can write forc(x,z,t)

c~x,z,t !5(
g
E ag

k~ t !cg
k~x,z! dk

5(
g
E ag

k~ t ! f g
k~z!eik"xdk. ~B3!

Replacing these expansions into Eq.~B1! and projecting
over the adjoint modes we arrive at

ȧg
k~ t !5sg

k~k,R!ag
k~ t !

1(
d,r

E dk8E dk9Bg,d,r~k,k8,k9!d~k2k8

2k9!ad
k8~ t !ar

k9~ t !, ~B4!

in which we have defined the coefficientB as

Bg,d,r~k,k8,k9!5
^ f g

k* ~z!,N @ f d
k8~z!, f r

k9~z!#&

^ f g
k* ~z!, f g

k~z!&
. ~B5!
06630
-

s

We consider the modes in Fig. 1, which can be classified
unstable @su.0,(k1 ,k2 ,k3)# and stable @ss
,0,(k0 ,k4 , . . . ,k9)#. The latter can be eliminated adiaba
cally (ȧd

ks.0):

ad
ks~ t !52(

b,r
E dk9 dk-Cdbrd~ks2k92k-!ab

k9ar
k- ,

~B6!

where Cdbr(k,k8,k9)5Bdbr(k,k8,k9)/sd
k . This allows to

write

ȧg
k~ t !5sg

k~k,R!ag
k~ t !1(

dr
E dk8E dk9 Bgdr~k,k8,k9!d~k

2k82k9!ad
k8~ t !ar

k9~ t !

2(
drb

E dk8E dk9 E dk-d~k2k8

2ks!Dgdrb~k,k8,k9,k-!ad
k8~ t !ar

k9~ t !ab
k-~ t !, ~B7!

with

Dgdrb~k,k8,k9,k-!5(
n
E dks d~ks2k92k-!

3Bgnb~k,k8,k9!Cndr~ks ,k9,k-!.

~B8!

The coefficientsB can be split into a thermal partB u and
a viscous partB v, B5B u1B v. From Eqs.~8!–~11! one ob-
tains

B gdr
u ~k,k8,k9![

^ug
k* ~vd

k8
•“ !ur

k9&

^Pr21vg
k* •vg

k1ug
k* ug

k&
,

B gdr
v ~k,k8,k9![

^vg
k* •@~vd

k8
•“ !vr

k9#&

^vg
k* •vg

k1Prug
k* ug

k&
, ~B9!

which can be simplified after employingVg
k(z)

5( ikDWg /k2,Wg), so the operator (vg•“) yields
(2k•k8DWg /kj

21WgD):
7-10
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B gdr
u ~k,k8,k9!5 (

k8,k9
dk,k81k9E

0

1

Qg
k* S 2

k•k8

k82
DWd

k8Qr
k9

1Wd
k8DQr

k9D dz, ~B10!

B gdr
v ~k,k8,k9!5 (

k8,k9
dk,k81k9E

0

1F2
~k8•k9!~k•k9!

k82k92

3DWg
k* DWd

k8DWr
k91

k•k9

k92

3DWg
k* Wd

k8D2Wr
k92

~k8•k9!k2

k82

3Wg
k* DWd

k8Wr
k91Wg

k* Wd
k8DWr

k9Gdz.

~B11!

Fortunately symmetry and orthogonality relations, as wel
suitable approximations, allows us to further reduce th
06630
s
e

expressions. Therefore we compute separately quadratic
cubic terms.

1. Quadratic gradient terms

The coefficients a1 and a2 are derived from
a(k1 ,k2 ,k3)5t0B111(k1 ,k2 ,k3) employing the fact that
vertical modes of order higher than the first one do not c
tribute to the expansion. Therefore aroundk5kc we can
write

a~ uk81k9u2,k82,k92!.a~kc
2 ,kc

2 ,kc
2!1

]a

]k2U
k25k

c
2

~ uk81k9u2

2kc
2!1

]a

]k82U
k825k

c
2

~k822kc
2!

1
]a

]k92U
k925k

c
2

~k922kc
2!, ~B12!

and sincek5kc
i 1q,k85kc

i 111q8,k85kc
i 121q9, we obtain
E
k,k8,k9

a~k2,k82,k92!ak8
i 11ak9

i 12eik•xd~k2k82k9! dk dk8 dk9

5E
k8,k9

a~ uk81k9u2,k82,k92!ak8
i 11ak9

i 12e2 ik8•xe2 ik9•x dk8 dk95eikc•xa0Āi 11Āi 121eikcxE
q8q9

dq8 dq9e2 iq8•xe2 iq9•x

3F ]a

]k82
~2kc

i 11
•q81q82!1

]a

]k2
~2kc

i 11
•q81q82!1

]a

]k92
~2kc

i 12
•q91q92!1

]a

]k2

3~2kc
i 12

•q91q9212kc
i 11

•q912q8•q9!Gaq8
i 11aq9

i 12

5eikc•xH a0Āi 11Āi 121 ib1F Āi 12S ni 11•“1 i
“

2

2qs
D Āi 111Āi 11S ni 12•“1 i

“

2

2qs
D Āi 12G1 ib2F Āi 12~ni 12•“ !Āi 11

1Āi 11~ni 11•“ !Āi 121
i

kc
~“Āi 11!~“Āi 12!G J , ~B13!
an
in which

a0[a~kc ,kc ,kc!, ~B14!

b1[2kcF ]a

]k92
1

]a

]k2G52kcF ]a

]k82
1

]a

]k2G , ~B15!
b2[2kc

]a

]k2
. ~B16!

Taking into account thatn̂252n̂3/21A3t̂3/2, n̂352n̂2/2
2A3t̂2/2 and neglecting second-order derivatives, we c
write the quadratic gradient terms as
7-11
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a→a01 ia1@Āi 11~ni 12•“ !Āi 121Āi 12~ni 11•“ !Āi 11#

1 ia2@Āi 11~ti 12•“ !Āi 122Āi 12~ti 11•“ !Āi 11#,

~B17!

with

a152kcF ]a

]k82
1

1

2

]a

]k2G5F ]a

]k8
1

1

2

]a

]k G , ~B18!

a252kc

A3

2

]a

]k2
5

A3

2

]a

]k
. ~B19!

2. Cubic terms

The cubic terms in Eq.~B7! are rather complicated bu
consistently with an amplitude expansion up to the third
der we can reduce the integrals to sums over the mini
resonant terms. So we deal withuki u5kc , i 51,2,3, and am-
plitudesAk , in terms of which the Eq.~B7! becomes

Ȧk1~ t !5sk1~k,R!Ak11B~k1 ,k2 ,k3!Āk2Āk3

1 (
k8,k9

dk1 ,k81ks
Ak8B~k1 ,k8,ks!

3 (
k9,k-

dks ,k91k-C~ks ,k9,k-!Ak9Ar
k- .

~B20!

For example, the equation forAk1 includes a termĀk2Āk3,
but also the resonant terms

Ak1→5
k11k0→B~k1 ,k1 ,k0!Ak1Ak0

k72k1→B~k1 ,k7 ,2k1!Ak7Āk1

k51k2→B~k1 ,k5 ,k2!Ak5Ak2

k32k6→B~k1 ,k3 ,2k6!Ak3Āk6

~B21!

Then the enslaved modes contribute as

Ak0→C~k0 ,k1 ,2k1!~Ak1Āk11Ak2Āk2,1Ak3Āk3!,
~B22!

Ak7→C~k7 ,k1 ,k1!Ak1Ak1, ~B23!

Ak5→C~k5 ,k1 ,2k2!Ak1Āk2 ~B24!
ev

06630
-
al

Āk6→C~k6 ,k1 ,2k3!Ak1Āk3. ~B25!

This is the general scheme to eliminate horizontal mod
But vertical modes enter also through nonlinearities. For
ample, for the quadratic terms one gets

(
dr

(
k8,k9

dk,k81k9Bgdr~k,k8,k9!Ad
k8Ar

k9

5B111~k1 ,k2 ,k3!Ā1
k2Ā1

k31(
n

B1n1~k1 ,k2 ,k3!

3~Ān
k2Ā1

k31Ā1
k2Ān

k3!, ~B26!

and damped modesAn
k2 (nÞ1) contribute to the cubic term

through

An
k252

Bn11~k1 ,k2 ,k3!

sn
Ā1

k3Ā1
k1 , ~B27!

Taking all these facts into account one arrives to the n
mal form Eq.~23!:

t0] tA15eA11aĀ2Ā32g1A1uA1u22g2A1~ uA2u21uA3u2!,

~B28!

with the coefficients

a5t0B111~k1 ,k2 ,k3!, ~B29!

g15t0(
n

FB1n1~k1 ,k7 ,2k1!Bn11~k7 ,k1 ,k1!

sn
k7

1
B1n1~k1 ,k1 ,k0!Bn11~k0 ,k1 ,2k1!

sn
k0 G , ~B30!

g25t0(
n

FB1n1~k1 ,k5 ,k2!Bn11~k5 ,k1 ,2k2!

sn
k5

1
B1n1~k1 ,k1 ,k0!Bn11~k0 ,k1 ,2k1!

sn
k0

1
B1n1~k1 ,k2 ,k3!Bn11~k1 ,k2 ,k3!

sn
k1 G . ~B31!
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