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CONTINUOUS CONVERGENCE AND DUALITY OF LIMITS OF
TOPOLOGICAL ABELIAN GROUPS

S. ARDANZA-TREVIJANO, M.J. CHASCO

Abstract. We find conditions under which direct and inverse limits of arbi-
trary indexed systems of topological Abelian groups are related via the dual-
ity defined by the continuous convergence structure. This generalizes known
results by Kaplan about duality of direct and inverse sequences of locally
compact Abelian groups.

1. Introduction

Given a topological Abelian group G, its group of continuous characters ΓG
endowed with the compact open topology τco is another topological group, usu-
ally denoted byG∧ and called the dual ofG. The duality theorem of Pontryagin-
van Kampen states that a locally compact Abelian (LCA) group G is topologi-
cally isomorphic to its bidual group (G∧)∧ by means of the natural evaluation
mapping. This theorem lies at the core of abstract harmonic analysis on locally
compact Abelian groups and its extension to more general groups gives rise to
the notion of reflexive group.

The original results of Pontryagin-van Kampen can be generalized to more
general topological Abelian groups by means of two different duality theories.
That is, given a topological Abelian group G we may consider ΓG endowed
with either the compact open topology τco, obtaining G∧ the Pontryagin dual
(P -dual), or the continuous convergence structure Λc, obtaining a convergence
group denoted by ΓcG that we call the c-dual of G. The convergence structure
Λc has the advantage of making the evaluation mapping ω : ΓG × G → T
continuous although it is not usually topological. For a locally compact Abelian
group G there is no difference between τco and Λc in ΓG. Hence the theorem
of Pontryagin-van Kampen can be understood in the framework of the two
dualities. There are many extensions of this theorem obtained for P -duality.
We give as examples the ones by Kaplan [9], [10], Smith [15], Banaszczyk [2]
or Pestov [14] among others. The approach of c-duality has also been fruitfully
used in the works of Binz, Butzmann and others. The recent book of Beattie
and Butzmann [3] provides an excellent overview of convergent structures and
contains many relevant results in this direction.

A frequently used method to extend a property of a class of groups to a larger
class is to take direct or inverse limits. There are situations where this method
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can be used to extend the known members of the class of reflexive groups.
Kaplan proved that sequential direct and inverse limits of locally compact
Abelian groups are P -reflexive and also that the P -dual of a sequential direct
(inverse) limit is the inverse (direct) limit of the corresponding sequence of
P -duals [10]. However, there is an old example due to Leptin [11] of an inverse
limit of P -reflexive groups that is not P -reflexive.

The aim of the present article is to show that under some conditions, direct
and inverse limits are related via c-duality. Working in the c-duality setting
allows us to get rid of the requirement of countability of the index set that is
present in Kaplan’s results mentioned above. Countability is also needed in
[1] where the authors prove that certain direct and inverse limits of sequences
of P -reflexive Abelian groups that are metrizable or kω-spaces are P -reflexive
and dual of each other. These results have been recently extended by Glöckner
and Gramlich in [7].

We first study when the c-dual of a direct limit is the inverse limit of the
c-dual system. Here, a crucial fact is that in the category of continuous con-
vergence Abelian groups, the natural map η from a group to its c-bidual is
continuous.

We then proceed to study under which conditions the c-dual of the limit of
an inverse system is the direct limit of the c-dual system. This is a delicate
problem that cannot be solved by categorical arguments only. The usual con-
struction of the direct limit as a quotient group of the coproduct of the groups
in the system gives a hint of where the difficulties come from. In P -duality the
P -dual of the product is not always the coproduct.1 This difficulty disappears
in the framework of c-reflexivity [3]. However further work is needed to prove
c-duality between general inverse and direct limits.

2. Convergence groups and c-duality

We introduce in this section the category of convergence Abelian groups
denoted by CAG and the notion of c-duality. For an up to date introduction to
convergence Abelian groups we refer the reader to the monograph [3].

First recall some basic notions about convergence spaces.
A convergence structure on a set X consists of a map λ : X → 2F(X) where F

is the set of all filters on X, such that for all x ∈ X we have

i) The filter generated by x belongs to λ(x).
ii) For all filters F , G ∈ λ(x), the intersection F ∩ G belongs to λ(x).

iii) If F ∈ λ(x), then G ∈ λ(x) for all filters G on X finer than F .

A convergence space (X,Λ) is a set with a convergence structure. See ([3],
pp. 2ff), for a more detailed exposition.

The notion of convergence space generalizes that of topological space. A
topological space has a natural convergence structure, given by the convergent
filters in the topology, which makes it a convergence space. Note that there
are well known convergence structures, like the almost sure convergence in
measure theory, that do not come from a topology on the supporting set.

1Nickolas proved that the P -dual of a product of LCA groups coincides with the coproduct of
the P -duals if and only if the index set is countable [13].
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Many topological notions that can be stated in terms of convergence of filters
(such as continuity, open and closed sets, cluster point, compactness, etc) have
their corresponding definitions for convergence spaces.

A convergence group is a group endowed with a convergence structure com-
patible with the group structure. Clearly every topological group is a conver-
gence group and it can be treated in this way.

Let CAG be the category of convergence Abelian groups whose objects are
convergence Abelian groups and whose morphisms are continuous homomor-
phisms. For two objects G and H in CAG, the group of morphisms from G
to H will be denoted by CAG(G,H). The category TAG of topological Abelian
groups and continuous homomorphisms is a full subcategory of CAG.

Consider the multiplicative group T = {z ∈ C : |z| = 1} with the Euclidean
topology and denote by ΓG the group of morphisms CAG(G,T).

We now define a convergence structure that makes ΓG a convergence group
with nice properties. The continuous convergence structure Λc in ΓG is the
coarsest convergence structure for which the evaluation mappingω : ΓG×G→
T is continuous2 (ΓG ×G has the natural product convergence).

That is: A filterΦ of ΓG converges continuously toφ if and only ifω(Φ×F ) =
Φ(F ) converges to φ(x) in T, for every F → x in G. Here Φ × F denotes the
filter generated by the products Φ×F and ω(Φ×F ) = Φ(F ) denotes the filter
generated by the sets Φ(F ), with Φ ∈ Φ, F ∈ F .

For any objectG in CAG, we have that ΓG with the continuous convergence
structure Λc is a Hausdorff convergence group ([3], 8.1) named the convergence
dual group of G (c-dual for short) and denoted by ΓcG. By Hausdorff we mean
that any filter in ΓcG has at most one limit. From now on we will consider
all of our groups in the subcategory of Hausdorff convergence Abelian groups
HCAG.

For each f ∈ HCAG(G,H), we can define the adjoint homomorphism Γcf ∈
HCAG(ΓcH,ΓcG) by Γcf (χ) = χ ◦ f for χ ∈ ΓcH. Thus Γc(−) is a contravariant
functor from HCAG to HCAG (or a covariant functor from HCAGop to HCAG).
There is a natural transformation κ from the identity functor in HCAG to the
covariant functor ΓcΓc(−) := Γc(Γc(−)). This can be described by κG : G →
ΓcΓcG where

[
κG(x)

]
(χ) = χ(x) for any x ∈ G and χ ∈ ΓcG. Note that if the

starting group G is a topological group, then the continuous convergence in
its c-bidual ΓcΓcG is also topological (see [6]). A convergence Abelian group
G is said to be c-reflexive if κG is an isomorphism in HCAG. The continuity of
ω : ΓcG × G → T implies that κG is also continuous and hence a morphism in
HCAG(G,ΓcΓcG).

We now relate c-reflexivity to the classical Pontryagin reflexivity. Recall
that for a group G in HTAG, ΓG with the compact open topology τco is a topo-
logical group usually denoted byG

∧
. The groupG is called Pontryagin-reflexive

or P -reflexive, if the evaluation σG → G
∧∧

is a topological isomorphism. Note
that this evaluation may not even be a morphism in HTAG, since it may not
be continuous. The duality theorem of Pontryagin-van Kampen was originally
stated for groups in LCA. For a group G in this category, τco and Λc coincide in

2Note that in the Pontryagin setting the continuity of ω : G
∧ ×G→ T is a strong requirement

since it forces any reflexive group G to be locally compact [12].



18 S. ARDANZA-TREVIJANO, M.J. CHASCO

ΓG, hence in LCA there are no differences between P -duality and c-duality.3

Therefore the original results of Pontryagin-van Kampen can be generalized
in two directions. Given a group G, consider in ΓG either the compact open
topology to study P -reflexivity (as in Pontryagin duality theory), or the con-
tinuous convergence structure to study c-reflexivity. We will adopt the latter
point of view in the remaining sections.

3. Direct and inverse limits of convergence groups

A directed set A can be considered as a category where the objects are the
elements α ∈ A and the set of morphismsA(α, β) consists of only one element if
α ≤ β and is empty otherwise. A direct system in HCAG is a covariant functor
D from a directed set A to HCAG. We use the notation {Gα, f

β
α ,A} for a direct

system, where Gα = D(α) are the groups and fβα = D
(
A(α, β)

)
the linking

maps.
A direct limit or inductive limit for a direct system {Gα, f

β
α ,A} in HCAG is

a pair (lim−→Gα, {pα}α∈A), where lim−→Gα is an object in HCAG and the pα’s are
morphisms in HCAG(Gα, lim−→Gα) such that pα = pβ ◦ fβα for α ≤ β, satisfying
the following universal property: Given an object G′ in HCAG and morphisms
p′α in HCAG(Gα, G′) for all α ∈ A such that p′α = p′β ◦f

β
α whenever α ≤ β, there

is a unique morphism p in HCAG(lim−→Gα, G′) such that p′α = p ◦ pα.
Dually, an inverse system in HCAG is a contravariant functor I from A to

HCAG (or equivalently a covariant functor fromA to HCAGop, the opposite cat-
egory). We will denote a generic inverse system by {Gα, gαβ ,A} and an inverse
limit or projective limit by a pair (lim←−Gα, {πα}α∈A), where πα : lim←−Gα → Gα.

In order to describe the standard constructions of inverse and direct limits
in HCAG we first recall the notions of products and coproducts in this category.

Let {Gα}α∈A be a family in HCAG and let
∏
Gα be the (algebraic) product.

The product convergence structure on the group
∏
Gα is the initial convergence

structure with respect to the projections πα :
∏
Gα → Gα. This convergence

structure makes
∏
Gα an object in HCAG.

A filter F converges to an element x ∈
∏
Gα if and only if, for each α ∈ A,

πα(F ) converges to πα(x) in Gα. Observe that if all the convergence groups
of the family {Gα}α∈A are topological, then its convergence product is also
topological.

The inverse limit of an inverse system {Gα, gαβ ,A} in HCAG, can be con-
structed as the following subgroup of the product

∏
Gα,{

(xα)α∈A ∈
∏

Gα : gαβ (xβ) = xα
}
.

The algebraic coproduct of Abelian groups
⊕

α∈AGα is the group of all
x ∈

∏
Gα such that {α ∈ A : πα(x) 6= eGα

} is finite. The coproduct conver-
gence structure is defined as the finest group convergence structure making
the inclusions iα : Gα →

⊕
Gα continuous.

The group
⊕

Gα with the coproduct convergence structure is an object of
HCAG called the coproduct convergence group of the family {Gα}α∈A.

3A metrizable topological Abelian group isP -reflexive if and only if it is c-reflexive [5]. However
this equivalence is not true in general [6].
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Considering the coproduct convergence on
⊕

Gα, the standard construction
of the inductive limit in HCAG for a direct system {Gα, f

β
α ,A} is the following

lim−→Gα
∼= (

⊕
Gα)/H̄,

where H is the subgroup generated by {iβ ◦ fβα (gα)− iα(gα) : α ≤ β; gα ∈ Gα},
and H̄ is the intersection of all the closed subgroups of G containing H.

4. Duality properties of limits

There are many interesting results published in the literature about c-
duality of convergence groups. We will use two of them due to Beattie and
Butzmann as the starting point of our study. The first result establishes the
isomorphisms Γc

(∏
Gα

) ∼= ⊕
ΓcGα and Γc

(⊕
Gα

) ∼= ∏
ΓcGα where (Gα)α∈A,

is any family of convergence Abelian groups. Consequently if the convergence
groups (Gα) are all c-reflexive, both

⊕
Gα and

∏
Gα are also c-reflexive (pp.

214-215 of [3]).

Remark. Observe that if we work with arbitrary index sets we cannot trans-
late this statement completely to the Pontryagin setting. The product of an
arbitrary family of P -reflexive groups is P -reflexive, however the P -dual of the
product cannot always be described as the coproduct of the P -dual system, as
we noticed in the introduction.

The second result by Beattie and Butzmann (p. 229 of [3]) shows that the
limit of an inverse system of locally compact topological groups is c-reflexive.
We have further explored the duality relation between direct and inverse lim-
its. Our first result describes the c-dual of the direct limit and it follows directly
from categorical arguments.

Theorem (4.1). Let {Gα, f
β
α ,A} be a a direct system of convergence groups.

Then
Γc( lim−→Gα) ∼= lim←−ΓcGα

Proof. For each pair G and H of objects in HCAG and morphism f : G →
ΓcH, there is a unique morphism f ′ : H → ΓcG such that Γc(f ′)◦κG = f . In fact,
for h ∈ H and g ∈ G, f ′(h)(g) = f (g)(h) and the map A : HCAG(G,ΓcH) →
HCAG(H,ΓcG) which maps f to f ′ is continuous. Hence, the functor Γc(−) :
HCAGop → HCAG is right adjoint to Γc(−) : HCAG → HCAGop and conse-
quently, the contravariant functor Γc(−) : HCAG → HCAG transforms direct
into inverse limits whenever they exist ([8], p. 307). Hence

Γc( lim−→Gα) ∼= lim←−ΓcGα

The c-dual of the inverse limit cannot be obtained in such a natural way
and requires restrictions on the groups and morphisms, which we proceed to
describe.

Denote T+ = {z ∈ T |Re z ≥ 0}. For a convergence group G, the polar of a
subset A ⊂ G is the set AB = {χ ∈ ΓG : χ(A) ⊂ T+} and the inverse polar of a
subset B ⊂ ΓG is BC = {x ∈ G : χ(x) ⊂ T+ for all χ ∈ B}.

Let G be an object of HCAG. A subgroup H of G is called dually closed in
G if for every x ∈ G \H there exists a character χ ∈ ΓG with χ(H) = eT and
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χ(x) 6= eT. A subgroup H of G is called dually embedded if every character of
H extends to a character of G. Note that a subgroup H of G is dually closed
in G if and only if H = HBC.

Proposition (4.2). (1) Let {Gα, f
β
α ,A} be a direct system of convergence

groups and H = gp{iα(xα)− iβ ◦ fβα (xα) : α ≤ β; xα ∈ Gα}. Then

HB = lim←−ΓcGα.

(2) Let {Gα, gαβ ,A} be an inverse system of convergence groups where the limit
maps πα have dense images. Let L = gp{iα(ϕα) − iβ ◦ Γc(gαβ )(ϕα) : α ≤ β, ϕα ∈
ΓcGα}. Then

(lim←−Gα)� = L.

Proof. First part:

Given (ϕα)α∈A ∈
∏

ΓcGα and xα ∈ Gα, the following equalities hold:

(ϕα)(iα(xα)− iβ ◦ fβα (xα)) = ϕα(xα)− ϕβ(fβα (xα)) = ϕα(xα)− Γcf
β
α (ϕβ)(xα) .

From here it follows, on the one hand, that if (ϕα)α∈A ∈ lim←−ΓcGα, then
(ϕα)(iα(xα) − iβ ◦ fβα (xα)) = eT and on the other hand if (ϕα)α∈A ∈ HB, then
Γcf

β
α (ϕβ) = ϕα since (Γcf

β
α (ϕβ)− ϕα)(xα) = eT for all xα ∈ Gα.

Second part:

If (xα)α∈A ∈ lim←−Gα, we have that gαβ (xβ) = xα, hence

(iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα))(xα)α∈A = ϕα(xα)−
(
Γc(gαβ )(ϕα)

)
(xβ)

= ϕα(xα)− ϕα
(
gαβ (xβ)

)
= ϕα(xα)− ϕα(xα) = eT,

and we have proven that L ⊂ (lim←−Gα)�.
We are left to prove the opposite inclusion. Any element (ϕα)α∈A ∈ (lim←−Gα)B

can be represented as a finite sum

(ϕα)α∈A = iα1 (ϕα1 ) + · · ·+ iαk (ϕαk ) .

where αk ≥ α1, . . . , αk−1
Consider now an arbitrary element xαk ∈ παk (lim←−Gα) and let (xα)α∈A be an

element of the inverse limit with αk coordinate xαk . We know that gαβ (xβ) = xα,
α ≤ β and since (ϕα)α∈A is in the polar of lim←−Gα, we have

((Γc(gα1
αk

))(ϕα1 ) + · · ·+ (Γc(g
αk−1
αk ))(ϕαk−1 ) + ϕαk )(xαk )

= (ϕα1g
α1
αk

+ · · ·+ ϕαk−1g
αk−1
αk + ϕαk )(xαk )

= ϕα1 (xα1 ) + · · ·+ ϕαk (xαk )

= (ϕα)α∈A((xα)α∈A) = eT

and hence, since παk (lim←−Gα) is dense in Gαk ,(
(Γc(gα1

αk
))(ϕα1 ) + · · ·+ (Γc(g

αk−1
αk ))(ϕαk−1 ) + ϕαk

)
= eΓcGαk

.
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We can now subtract this term from the expression for (ϕα)α∈A which is enough
to obtain our result. More concretely,

(ϕα)α∈A = iα1 (ϕα1 ) + · · ·+ iαk (ϕαk )

= iα1 (ϕα1 ) + · · ·+ iαk (ϕαk )

− iαk
(

(Γc(gα1
αk

))(ϕα1 ) + · · ·+ (Γc(g
αk−1
αk ))(ϕαk−1 ) + ϕαk

)
= iα1 (ϕα1 )− iαk (Γc(gα1

αk
))(ϕα1 ) + . . .

+ iαk−1 (ϕαk−1 )− iαk (Γc(g
αk−1
αk ))(ϕαk−1 ) + iαk (ϕαk )− iαk (ϕαk ),

from which we conclude (lim←−Gα)B ⊂ L.

We describe the c-dual of the inverse limits in the class of Nuclear groups.
Roughly speaking a Hausdorff Abelian groupG is Nuclear if each neighborhood
of zero contains another neighborhood which is “sufficiently small”4. This class
of groups, introduced by Banaszczyk in [2], has good permanence properties
— subgroups, quotients and products of nuclear groups are nuclear groups.
Locally compact groups are nuclear and the groups underlying nuclear locally
convex topological vector spaces are also in the class of nuclear groups. Ba-
naszczyk succeeded in generalizing many properties of LCA groups to nuclear
groups.

Lemma (4.3). Every subgroup H of a nuclear group G is dually embedded
and Γci : ΓcG→ ΓcH is a quotient mapping with kernel HB.

Proof. See Corollary 8.3 in [2] and Corollary 8.4.10 in [3].

Our first description of the c-dual of an inverse limit also requires some
restriction on the limit maps.

Theorem (4.4). Let {Gα, gαβ ;A} be an inverse system of nuclear groups where
the limit maps πα have dense images. Then

Γc(lim←−Gα) ∼= lim−→ΓcGα

Proof. We have by (4.2) (2) that

(lim←−Gα)� = gp{iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα), : α ≤ β, ϕα ∈ ΓcGα}.

It follows that lim−→ΓcGα is the quotient convergence group (
⊕

ΓcGα)/(lim←−Gα)�.
But this is an object in HCAG isomorphic to Γc(

∏
Gα)/(lim←−Gα)�. We still need

to prove that Γc(lim←−Gα) is isomorphic to this object. In order to do that we use
Lemma (4.3) about subgroups of nuclear groups:

Since all groupsGα are nuclear groups the product
∏
Gα is nuclear, therefore

by Lemma (4.3), Γi : Γc(
∏
Gα)→ Γc(lim←−Gα) is a quotient mapping with kernel

(lim←−Gα)� which induces an isomorphism ψ : Γc(
∏
Gα)/(lim←−Gα)� → Γc(lim←−Gα)

in the category HCAG. Hence the assertion follows.

4A Hausdorff Abelian group is called Nuclear if it satisfies the following condition: Given an
arbitrary neighborhood U of eG, c > 0 and m = 1, 2, . . . , there exists a vector space E and two pre-
Hilbert seminorms p, q on E with dk(Bp , Bq) ≤ ck−m, where dk is the kth Kolmogorov diameter
and k = 1, 2, . . . , ([2] p. 72)
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We now give an alternative description of the c-dual of an inverse limit
without any condition on the limit maps. Let G be a convergence group. We
will say that G has enough characters if κG : G→ ΓcΓcG is injective, i.e., if for
all x ∈ G, x 6= eG there exists χ ∈ ΓcG such that χ(x) 6= eT. Given an arbitrary
convergence groupG, it is easy to check thatG/ker(κG) is a convergence group
with enough characters.

Denote by HCAGκ1:1
the category of convergence groups with enough charac-

ters, we can define a full functorF : HCAG → HCAGκ1:1
byF (G) = G/ker(κG).

The functor F is left adjoint to the inclusion functor HCAGκ1:1
→ HCAG and

hence it preserve direct limits, i.e., F (lim−→Gα) = lim−→(FGα).

Lemma (4.5). Let G be a Hausdorff convergence group and H a closed sub-
group of G, then F (G/H) ∼= G/HBC.

Proof. Since F (G/H) ∼= G/H
ker(κG/H ) , it is enough to see that ker(κG/H ) is pre-

cisely HBC/H. Now for x ∈ G, κG/H [x] = eΓcΓc(G/H) iff χ[x] = eT for all
χ ∈ Γc(G/H) which is the same as the statement: χ̃(x) = eT for all χ̃ ∈ ΓcG
such that χ̃(H) = eT and this occurs if and only if x ∈ HBC.

Theorem (4.6). Let {Gα, gαβ ,A} be an inverse system of complete nuclear
topological groups. Then

Γc(lim←−Gα) ∼= F (lim−→ΓcGα) .

Proof. Note that a nuclear group is complete if and only if it is c-reflexive
(see [4]). We know that lim←−Gα is a subgroup of

∏
Gα, which in turn is a nuclear

group. Hence by 8.4.5 in [3] Γc(i) : Γc(
∏
Gα) → Γc(lim←−Gα) is a quotient map

with kernel (lim←−Gα)B. This map induces an isomorphism Γc(
∏
Gα)/(lim←−Gα)B→

Γc(lim←−Gα) in HCAG.
Denote by L = gp{iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα) : α ≤ β, ϕα ∈ ΓcGα}
Now by (4.2).1 we have that LB = lim←−(ΓcΓcGα) ∼= lim←−Gα. Hence LBB ∼=

(lim←−Gα)B. The c-reflexivity of
⊕

ΓcGα yields (lim←−Gα)B = LBC. Finally

Γc(lim←−Gα) ∼=
Γc(

∏
Gα)

(lim←−Gα)B
∼=

⊕
ΓcGα

(lim←−Gα)B

=
⊕

ΓcGα

LBC
= F

(⊕
ΓcGα

L

)
= F (lim−→ΓcGα).
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