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Abstract

Many dynamical processes that occur in nature or in experiments are

space-time bifurcations in systems with symmetries. One of the most
outstanding examples of such bifurcations is the Takens-Bogdanov bi-
furcation [1] that has been used to model Codimension-two bifurcations
with double zero eigenvalues and square symmetries, that exhibit chaotic
behavior [2, 3]. In particular, the dynamics of termo-convective experi-
ments in square cells with a small aspect ratio have been modeled with
the groups of symmetry Z2 [4] and D4 [5].
In the first part of this work we describe the dynamic behavior appear-
ing in the equation system with the group of symmetry D4 proposed in
[2], as a function of the different parameters. The space of parameters
is analyzed in order to identify those variables that could be useful to
synchronize, in space and time, two identical systems of this kind. In
the second part we describe the first results obtained to synchronize two
identical systems.
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1. Introduction

Bifurcations, in presence of symmetries appearing in extended systems with
patterns formed by more or less periodic structures, have a symmetry group
directly related to the lattice symmetry of the periodic structure. Under this
conditions, solutions in bifurcations are normally very complex and have been
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found in detail only in some particular situations. But in strongly confined sys-
tems where natural structures are impossed by boundary conditions with less
symmetries, some typical situations of this kind of bifurcations can be analyzed
more easily. There is a classical situation that appear in Benard-Marangoni
convection [6] when the aspect ratio I' (the ratio between the medium hori-
zontal dimension D divided by depth of the fluid d (I' = D/d ) is low enough
as to put the system near a Codimension-2 point. A Codimension 2 point in
a convective system let us analyse experimentally this kind of bifurcation in
high detail and to compare it with theoretical and numerical solutions [1].

Codimension two points in small aspect ratio convective systems are re-
lated to the simultaneous instability of two convective modes. Unfortunately,
only in a few cases, this kind of bifurcations have been studied experimen-
tally [4, 5, 7]. The systems cited in these references (considering square and
cylindrical symmetries) have been studied experimentally and also have been
modeled by solving the Navier-Stokes equations and using adequate lateral
boundaries conditions. This works consider resonances between the lowest
order modes (1:1, 1:2), [8, 9]. Numerical simulations reproduce qualitatively
the complex dynamical results obtained experimentally as a function of the
control parameter.

But in [4], it was shown that the dynamic behavior can be modeled by
a Takens-Bogdanov bifurcation reproducing all the sequence of bifurcations
without reference to the physical variables (the velocity and temperature
fields). In this work, the vector dynamics of the system was represented by a
scalar (geometrical) variable, easily observed and measured in the planform of
the system. By means of this variable, the complex dynamics of the experi-
mental system could be analyzed simplifying the analysis of the fluid dynamics.
The system of equations used here has been studied numerically by different
authors [2, 10].

We can see the stationary states obtained when the control parameter
(temperature) is increased and it is possible to relate it to the bifurcations
in the system of equations. It can be observed how the system, firstly in
the zero double point, breaks the spatial symmetry going then to one of the
two possibilities that keep a subset of the symmetry (the diagonal). Each
possibility of symmetry represent a spatial attractor.

After the spatial break of symmetry the sequence of bifurcations follows
with a time-dependent regime. A further increase in the control parameter
brings the system throughout a Hopf bifurcation to a limit cycle and then,
to a chaotic attractor in presence of the symmetries of the square partially
broken. A further increase in the control parameter brings the symmetric
attractors to collide with the (0,0) point, opening the possibility to an hete-

126



Complete Synchronization between Hyperchaotic Space-Time Attractors

roclinic conection. This heteroclinic connection produces a chaotic oscillation
with a very rich dynamics between both attractors, each of them representing
one of the preserved symmetries in the system.

In this work we present a detailed numerical analysis of the system of
equations, identifying the influence of the different parameters on the dynam-
ics. The aim is to detect the influence of those that could be used to control
or synchronize the system in the chaotic attractor. After it, we present some
results of simulations obtained when two identical experiments of this type
are synchronized. To detect the different synchronization regimes we used the
Lyapunov exponents calculated by the Runge-Kutta method for each variable.
The system is hyperchaotic having more than one Lypunov exponent positive.
When two identical systems are coupled, we obtain a system of 8 dimensions
instead of two of 4 and the space of phases can change as a function of the
coupling parameters values.

As an interesting result we obtained generalized synchronization in win-
dows as it has recently been shown in reference [11]. Moreover in this work
the chaotic behavior is not supressed. When synchronization takes place the
system remains chaotic, but the order of chaos is lowered. This paper de-
scribes first the different dynamic states of the system and then the results on
synchronization of two identical systems with symmetric coupling.

2. Bifurcations in systems with square symmetry

One of the simplest models to represent a real experiment in square symme-
try can be found in [4]. However, the set of equations used in this work is
over-simplified because only the symmetries that define the sub-space Z2 are
considered, and consequently, the experimental results can only be partially
reproduced. In order to recover all the details of this experiment the same
authors [5] introduce a system of equations that reproduce all the group of
symmetries D4, the symmetries of the square. The bifurcation problem is
now D4 equivariant as long as non additional symmetries are generated by the
boundary conditions of the box (hidden symmetries). D4 represent the group
of reflections (m) and rotations (p) of the square and the following equations
system include all the elements of symmetry. Hidden symmetries have been
used in [8] to reproduce the dynamics.

In our simulations we use the system of equations introduced in [2]:
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Figure 1: Spatial Bifurcations in the experiment and in the model. Symmetry
breaks preserving the diagonal elements.
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where (x,y, z,w) are the variables and (a, b, ¢, d, e, f, p,v,€) are parameters
that must be adjusted to fit the experiment. In order to solve this system a
4th order Runge-Kutta method has been used and the solutions obtained were
controlled by comparing to well known situations obtained by other authors
that use the same equations (when available). In order to check our simulations
we reproduce here the results obtained in [4] for the sequence of bifurcations
appearing when the control parameter is increased. It can be seen in Figure
3. When the control parameter is sufficiently high to have the heteroclinic
connection, the system is equivalent to four coupled oscillators. The phase
space of this oscillators seem two pair of eyes distributed in the planes (z,y)
and (z,w). Each pair of oscillators are winded by the heteroclinic connection
trajectories. In Figure 4 (a), we present temporal signals obtained for each
variable; and the plane of phases y(t) vs. z(t) and w(t) vs. z(¢) are shown in
Figure 4 (b). The similitude between both planes is easily seen.

It is important to remark that in the model ¢ is a critical parameter. If
we look for solutions representing the experiment, we need the & value near
zero because the equations system becomes unstable [2]. We adjusted the
parameters in the model in order to fit during a certain time the temporal
series obtained from the experiment.
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Figure 2: Generators of D4, the symmetry group of the square.

Figure 3: Bifurcations in the parameter space. The control parameter in the
experiment is the heat flow, associated with pu.
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Figure 4: (a) shows the temporal data signals for each variable and attractors
in the phase planes (z,y) and (z,w) are shown in (b).
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3. Attemps to synchronize two identical systems

In order to analyze the synchronization possibilities two sets of equations like
Eq. (1-4) has been coupled. We used a coupling scheme that can be symmetric
or asymmetric and the coupling is a direct function of the error between both
systems (acting as a feedback loop).

The equations for the coupled system can be seen in the set of Eq. (6-
12) where variables are named by the subscripts (1,2) corresponding to each
original system. The parameter 6 change the strength of the coupling between
the variables and 6 € [1, -1] controls the coupling symmetry. From the perfect
symmetric coupling (6 =0), to the master-slave condition obtained when 6§ =
(1, -1).

Z, = y1—|—%m(1+9x)(x2—x1) (5)
vi = pan+aafa(ed + 2) +028) + L1+ 0,) (e — ) (6)
G o= wi+ Z(1+0)( —a) (7)
wy = pz+ zi(a(z? + 22) +ba?) + %U(l + O) (w2 — w1) (8)
zy = yo+ %(1 = bz)(z1 — x2) (9)
vo = pws+aala(ed+ 23) +b23) + (1 - 0,)(mn o) (10)
2y = wy+ 6Ez(l —0,)(z1 — 22) (11)
wh = pzo+ zo(a(x3 + 23) + bad) + %U(l — bw) (w1 — w2) (12)

In order to detect synchronization windows we calculated the Lyapunov
exponents when the systems are coupled on the variables x (with a coupling
strength e, ) and making ¢, = €, = ¢,0. To obtain a symmetric coupling the
value of 0, must be fixed to zero (6,= 0). The system has now four positive
Lyapunov exponents and the results against the coupling strength are shown
in Figure 5.

In reference [11] the coupling of several chaotic 3-Dimensional systems
have been analyzed (Rossler, Lorenz, etc.), and they found windows to syn-
chronization observing the Lyapunov exponents behavior. Also in our system
we found different windows where the coupled systems could synchronized,
but as a strong difference, here the chaos is not supressed and variables are
completely synchronized [13].
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Figure 5: Lyapunov exponents for the coupled systems.
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4. Conclusions

The Takens Bogdanogv bifurcation equations can be used to analyze the space-
time synchronization between two systems with square symmetry (like the
experiment in reference [4]). Complete synchronization is achieved without
chaos suppression. But some remarks about the relation between simulations
and the experiment must be added. In the experiment represented by the
equations considered here, the pattern obtained after the spatial bifurcations
becomes time dependent. Under this conditions, the convective fluid layer re-
ceive a stationary flow of heat from a heater below and transfer it to the air in
the upper side of the layer, but transformed into a time dependent heat flow.
Physically considered this means that the system must store during a certain
time a part of the total flow. Continuity requires to conserve the mean flow at
the output equal to the stationary flow at the input. That is, the fluid layer
need to transfer the heat flow modulating it in amplitude by the heat stored
in the system. This produces, in consequence, a time dependent convective
pattern following these modulations. In our experiment the flow mean value
was modulated 10in amplitude (approx.) with quasiperiodic chaotic fluctua-
tions. Our model focuses on the time dependent variable around the mean
flow (the instantaneous value less the mean value). A scheme to clarify this
can be seen in Figure 6. In the pattern, the projection of the diagonal length:
(x = dcos ), follows the evolution of temperature in a wide range of the con-
trol parameter, as was demonstrated in [12]. The mean flow is a stationary
quantity that can easily be calculated by the normal heat transfer equations.

Another mathematical restriction must be remarked. The system of equa-
tions considered here is very useful to represent the bifurcation process in a
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Figure 6: Scheme to clarify the time dependent flow magnitude against its
mean value. Nu is the Nusselt number, a measure of the effective heat flow
and Ra is the Rayleigh number, the non-dimensional control parameter [12].

space with symmetry D4. However it has some limitations if we need too long
temporal series because the solution becomes unstable. In this case the model
is not valid, unless we make ¢ = f(x,y, z, w,t), which is not possible. As we
have noted, variables (z,y, z, w) have a physical meaning, they define the size
of the diagonals in the square, that is, a magnitude independent proportional
to the instantaneous heat flow.

It is important to remember that the model is constructed not with the
physical variables (velocity and temperature fields), but with a scalar projec-
tion of them defined on the pattern,that can be measured more easily. In
short, the model represents the dynamic observed on the pattern and syn-
chronization was achieved in the simulations, in the variables describing the
movements of the pattern.

Acknowledgements

We acknowledge to G. Mindlin for fruitful discussions and to D. Ambruster for
their answers about the solutions of system of equations used. One of us (G.V.)
also acknowledges a fellowship from the Asociacién de Amigos, University of
Navarra. This work has been partially supported by Spanish Governement
through project number FIS2007-66004 and by Univ. de Navarra (PIUNA
project).

References

[1] R. HOYLE, Pattern Formation, Cambridge Univ. Press (2006).

132



Complete Synchronization between Hyperchaotic Space-Time Attractors

2]

[3]

[4]

[5]

[6]

D. ARMBRUSTER, “Codimension 2 bifurcation in binary convection
with square symmetry”, pp.385-398, in Non-linear Evolution of Spatio-
Temporal Structures in Dissipative continuous Systems F. Busse and L.
Kramer, Ed. Plenun Press, N. York (1990).

J. GUCKENHEIMER AND P. HOLMES, Non-linear Oscillations, Dynamical
Systems and bifurcation of Vector Fields, Springer-Verlag (1983).

ONDARQUHU, T. MINDLIN, G., MANCINI, H., PEREZ GARCiA, C., “Dy-
namical patterns in Bénard-Marangoni convection in a square container”,
pp-385-398, in Non-linear Evolution of Spatio-Temporal Structures Phys.
Rev. Lett. 70, 3892 (1993).

G.B. MINDLIN, T. ONDARGUHU, H. L. MANcCINI, C. PEREZ GARCIA,
A. GARCIMARTIN, “Comparison of data from Bénard-Marangoni convec-
tion in a square container with a model based on symmetry arguments”,
pp-385-398, in Non-linear Evolution of Spatio-Temporal Structures Int.
J. Bifurcation Chaos 4, 1121-1133 (1994).

P. CoLNET.J.C. LEGROS, M. G. VELARDE, Nonlinear Dynamics of
Surface-Tension Driven Instabilities, Wyley-VCH Berlin (2001).

D. JOHNSON AND R. NARAYANAN, “Experimental observation of dy-
namic mode switching in interfacial-tension-driven convection near a
codimension-two point”, Phys. Rev. E 54, 3102-3104 (1996).

D. KrmpoTic, G. B. MINDLIN AND C. PEREzZ-GARCIA “Bénard-

Marangoni convection in square containers”, Phys. Rev. E, v.54, 3609-
3613, (1996).

B. ECHEBARRIA, D. KRMPOTIC, C. PEREZ-GARCIA “Resonant interac-

tions in Benard-Marangoni convection in cylindrical containers”, Physica
D 99 487-502 (1997).

GOLUBITSKY, M., STEWART, I., SCHAEFFER D.G., Singularities and
Groups in Bifurcation Theory, v.I1, Springer-Verlag, N.York (1988).

J. BRAGARD, G. VIDAL, H. MANCINI, C. MENDOZA, S. BOCCALETTI
“Chaos suppression through asymetric coupling”, (submitted) Chaos,
Jun. 2007.

H. Mancini, D. MazA “Benard-Marangoni Thermal Oscillators: An
experimental study”, Phys. Rev. E 55, pp. 2757-2768 (1997).

133



G. Vidal and H. Mancini

[13] S. BoccarLerTi, J. KUurTHS, G. Ostpov, D. VALLADARES, C. ZHOU

“The synchronization of chaotic systems”, Phys. Reports 366, pp. 1-101
(2002).

134



