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Abstract. In this work we report theoretical and numerical results on convection
in a viscoelastic binary mixture under rotation. In particular, we focus in the
Maxwelian case of viscoelastic fluid. We obtain explicit expressions for the con-
vective thresholds in terms of the mixture parameters of the system in the case
of idealized boundary conditions. We also calculate numerically the convective
thresholds for the case of realistic rigid-rigid boundary conditions.
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1 Introduction

A particularly interesting technique in molecular biology is the replication of DNA in a chain
reaction [1]. Usually, DNA fragments mixed with thermostable polymerase enzyme are heated
until the temperature required to unbound the double helix is reached (above 80 ◦C). Then
the mixture is annealed, and DNA fragments are doubled by the polymerase enzyme. After
several thermal cycles have been completed a high concentration of DNA is obtained. This is
known as polymerase chain reaction (PCR), a standard technique usually found in biochemistry
laboratories [1]. Thermal cyclers in the standard PCR heat and cool not only the whole reaction
volume, but also the surrounding vessel and its fitting. This implies a large thermal mass
involved which delays heating and cooling. Recently Krishna et al. [2] proposed to replace
conventional themocyclers by Rayleigh–Bénard convection cells. The same year, Braun and
Libchaber [3] found an efficient trapping mechanism of DNA in solution through the interplay
of convection and thermophoresis. In a subsequent article, Braun et al. [4] showed that PCR
may be driven by the temperature difference of a laminar convection cell. This convective PCR
is several times faster than the conventional one since only the temperature of the liquid is varied
and the vessel is kept at a constant temperature. To improve further this new technique based
on thermal convection, it is desirable to explore in detail the different regimes of convection in
DNA suspensions.

Convection in aqueous suspensions of DNA is not a trivial subject. First of all, these sus-
pensions are binary and the Soret effect, that couples thermal and concentrational gradients, is
important (see Cross and Hohenberg [5]). Binary fluids subjected to a vertical temperature gra-
dient experience both thermal and solutal stratification. Due to the fact that the fluid density
depends on solute concentration, it leads to a competition between thermal and compositional
gradients. This competition between heat diffusion and solute diffusion may lead to oscillations
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in the layer. The oscillatory convective instability in binary fluid mixtures is adequately under-
stood in quantitative detail, both experimentally and theoretically [5,6]. A second important
effect that has to be considered while working with DNA suspensions is that under the action
of shear or of externally-applied tension, the DNA coils can become extended. Consequently
viscoelastic properties of DNA must be taken into account in realistic models of DNA convec-
tion. Chu and collaborators [9–12] have performed a series of experiments in order to determine
the behavior of single DNA molecules under shear stresses. The longest time scale for the re-
laxation of a DNA molecule was found to be as large as few seconds, comparable with the
thermal diffusion time scale τ = d2/κ which is order of 1 s. This demonstrates that viscoelastic
properties are relevant in dealing with convection in DNA suspensions. Kolodner [7] reported
observations of oscillatory convection in DNA suspensions. The DNA concentrations that were
used in his experiments ranged from dilute to semi-dilute. The same author convincingly proved
that viscoelasticity is the cause of the oscillations obtained in his experiments.

Theoretical convective thresholds for binary mixtures [5,6], viscoelastic fluids [13], and bi-
nary viscoelastic fluids [14] can be found in the literature. It has been demonstrated that
instability may be stationary and oscillatory, depending on the binary and viscoelastic proper-
ties of the fluid. Rotation of the entire fluid vessel is another important effect that can modify
the convective regime. It is known from Chandrasekhar [15] that in general rotation has a stabi-
lizing effect on convection. Rotating convection in Newtonian fluid [16], binary mixture [17–19],
and viscoelastic fluids [20] have been thoroughly studied.

The purpose of the present paper is to analyze the influence of rotation in convective thresh-
olds in binary viscoelastic mixtures and, in particular, in aqueous DNA suspensions. To this
aim a binary mixture of Oldroyd viscoelastic fluid is heated from below and rotated around
the vertical axis. The description of the system involves many parameters whose values have
not yet been determined accurately. Therefore, we are left with some freedom in fixing the
parameter values. In order to be as exhaustive as possible, we will analyze the linear regime for
two different limiting cases of boundary condition i.e. the free–free and the rigid–rigid boundary
conditions. In the first case (free–free), one can explicitly calculate the threshold for convection
in function of the parameters of the fluid mixture. In addition, we have further checked that we
retrieved some old results for simplified situations obtained perviously by other authors. In the
case of realistic boundary conditions (rigid–rigid), an analytical calculation is not tractable and
we numerically solve the system using a spectral method in order to determine the eigenfunc-
tions and eigenvalues (the convective thresholds). The paper is organized as follows. In Sect. 2,
the basic hydrodynamic equations for binary viscoelastic convection are presented. In Sect. 3,
the linear stability analysis of the conduction state is performed, and the conditions for the
onset of convection are discussed. Finally, conclusions are drawn in Sect. 4.

2 Balance and constitutive equations

We consider a layer of incompressible binary viscoelastic fluid, of thickness d and very large
horizontal extension, in a gravitational field and submitted to a vertical temperature gradient.
It is assumed that the layer is rotating uniformly about the vertical axis with an angular velocity
#. In the Boussinesq approximation, the balance equations can be written [16] :

∇ · v = 0 (1)

ρ0(∂t + v ·∇)v = −∇p +∇ · τ + ρg + 2ρ0# × v +
1
2
ρ0∇(|# × r|2) (2)

(∂t + v ·∇)T = κ∇2T (3)
(∂t + v ·∇)N = D(∇2N + (kT /T0)∇2T ), (4)

where v = (u, v, w)T is the velocity field, ρ the mixture density, p the pressure, τ the extra stress
tensor, T the temperature, N the polymer concentration, r the position vector, g the gravity
acceleration, κ the thermal diffusivity, D the solute diffusivity, and kT the Soret coefficient. T0

and ρ0 denote reference values of temperature and density, respectively. For the liquid mixture,
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the following state equation is used: ρ = ρ0[1 − α(T − T0) + β(N − N0)], where α and β are
thermal and mass expansion coefficients, respectively and N0 is a reference value for polymeric
concentration.

In addition to the above governing equations, a constitutive equation relating the extra
stress tensor τ and the shear rate has to be added in order to be able to solve the system of
equations (1–4). For a simple (Newtonian) fluid, this constitutive equation reduces to τ = 2νD,
where ν is the kinematic viscosity and D is the symmetric part of velocity field gradient which
is a tensor of rank two [21]. For complex fluids, the constitutive relation between stress and
shear is by far more involved. There exist many models for characterizing these fluids, one class
of such fluids is described by the Oldroyd model [8] : (1+λ1Dt)τ = 2ν(1+λ2Dt)D, in which ν
is the static viscosity, λ1 is the relaxation time and λ2 is the retardation time, parameters that
characterize the viscoelastic properties. The symbol Dt denotes an invariant (frame–indifferent)
time derivative, defined as Dtτ = ∂tτ + (v∇·)τ + τ · W−W · τ + a(τ · D + D · τ), where W is
the skew–symmetric part of the velocity field gradient, and a is a phenomenological parameter
in the range [−1, 1]. For a = −1, one gets the lower convected Jeffrey’s model (Oldroyd B),
a = 0 leads to the so–called corotational Jeffrey’s model, and a = 1 corresponds to the upper
convected Jeffrey’s model (Oldroyd A). Let us fix the z-axis such that g = −gẑ and the
liquid layer is comprised between the two horizontal planes at z = 0 and z = d. The boundary
conditions for the temperature are T (z = 0) = T0+∆T , T (z = d) = T0 (boundaries are thermal
conductors) and for the polymeric concentration, one imposes that ∂z[N + (kT /T0)T ] = 0 at
both boundaries which corresponds to impermeable frontiers. For the vertical velocity, we first
consider the unrealistic conditions: w = ∂2

zw = 0 (free–free) and subsequently, the second
case: w = ∂zw = 0 (rigid–rigid) which is realistic but less tractable analytically. The reference
motionless solution (it is assumed that the viscoelastic liquid has relaxed enough time, typically
one second is enough for dilute polymeric suspensions [8]) from which we will study the stability
is easily obtained, one gets:

vc = 0 (5)
τc = 0 (6)
Tc(z) = T0 + ∆T (1− z/d) (7)
Nc(z) = N0 + ∆N(1− z/d) (8)
∇(p + |# × r|2/2) = −gρ0(1− α∆T + β∆N)(1− z/d), (9)

where ∆N = −(kT /T0)∆T . Before performing the linear stability analysis of the conducting
state defined by Eqs.(5–9), it is useful to rescale the variables by d (length), d2/κ (time), κ/d
(velocity), νκ/d2 (stress tensor), ∆T (temperature), ∆N (concentration). In the dimensionless
equations, θ and c denote the temperature and concentration, respectively. It is useful for
simplifying the calculations to define a new variable η = c− θ. The dimensionless equations for
the perturbations around the conducting state read as:

∇ · v = 0 (10)

P−1(∂t + v ·∇)v = −∇p +∇ · τ + [(1 + ψ)θ + ψη]ẑ +
√

Ta(v × ẑ) (11)
(∂t + v ·∇)θ = Ra w +∇2θ (12)
(∂t + v ·∇)(θ + η) = Raw + L∇2η (13)
(1 + ΓDt)τ = (1 + ΛΓDt)D, (14)

where the following dimensionless numbers have been introduced: a) buoyancy in pure fluid
is characterized by the Rayleigh number: Ra = αg∆Td3/(κν); b) the ratio between viscous
and thermal diffusivities is given by the Prandtl number P = ν/κ; c) the rotation rate is
quantified by the Taylor number Ta = 4#2d4/ν2; the ratio between the compositional and
thermal diffusivities in a binary fluid is given by the Lewis number L = D/κ and the separation
ratio ψ = βkT /(αT0) amounts for the Soret effect; d) the viscoelastic character of the liquid
mixture appears in the Deborah number Γ = λ1κ/d2 and in the ratio between the stress
relaxation and retardation times Λ = λ2/λ1 that varies from 0 for a Maxwell fluid to one for a
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Newtonian fluid [22]. The parameters Ra and Ta can be varied during an experiment by several
order of magnitude, while the parameter Γ that relates the relaxation time to the thermal
diffusion time is of order one for most viscoelastic fluids. The remaining parameters P, Λ, L
and ψ depend only of the liquid mixture and can not be modified during an experiment. A
typical value for the Prandtl number is P ≈ 10 (dilute DNA suspension) [7]. For the case of
interest in the present paper, i.e. aqueous suspensions of DNA, L is very small L ∈ [10−5, 10−4]
[3] and experiments performed by Chu and collaborators [9–12] suggest that the value for the
Deborah number in DNA suspensions is most likely in the range Γ ∈ [0.1, 2]. Unfortunately, at
present time, there is no experimental data available neither for the separation ratio ψ nor for
the ratio between the stress relaxation and retardation times Λ, therefore we use after looking
for comparable binary mixtures a slightly negative value for ψ and parameter Λ in the range
[0, 1].

3 Linear stability analysis

The linearized version of Eqs.(10–14) is easily obtained by neglecting the advective terms (v ·∇)
and replacing Dt by ∂t [15]. The centrifugal term can be included in the pressure term. This last
term is then eliminated by applying twice the curl operator to the momentum equation. Using
standard techniques [15], the spatial and temporal dependencies are separated using normal
mode expansion, (θ, η, w, ξ)(r, t) = (Θ,Φ,W, Z)(z) exp(ik⊥ · r⊥ + st), where ξ denotes the z–
component of the vorticity, the subscript ⊥ indicates functions in the horizontal plane only, k⊥
is the horizontal wavenumber of the infinitesimal perturbation (with modulus k) and s = σr+iΩ
is the associated complex eigenvalue, with σr the linear growth factor of the perturbation and
Ω its frequency. After some straightforward algebra, Eqs.(10–14) are linearized to the following
coupled ordinary differential equations:

[D2 − k2 − s]Θ + Ra W = 0 (15)
[L(D2 − k2)− s]Φ− sΘ + Ra W = 0 (16)

Q[D2 − k2 − s/(PQ)]Z +
√

Ta DW = 0 (17)

Q[D4 − (2k2 + s/(PQ))D2 + k2(k2 + s/(PQ))]W −
√

TaDZ − k2[ψΦ + (1 + ψ)Θ] = 0,(18)

where Q = (1+ΛΓs)/(1+Γs) and Dnf = dnf/dzn is the ordinary derivative in the z direction.
In the following two subsections, we analyze the results of the linear stability analysis for the
two considered boundary conditions.

3.1 Idealized boundary conditions

In the case of free–free boundary conditions which would correspond to a fluid with no viscosity
at the boundary (slippery walls), it is possible to solve analytically the system of Eqs.(15–18).
This is a standard eigenvalue–eigenfunction problem. The parameter Rayleigh number (Ra) is
taken as the eigenvalue and it is expressed as a function of s,q and the remaining parameters
of the problem. An explicit expression of the Rayleigh number is given:

Ra =
(q2

n + s)(Lq2
n + s)

k2(1 + ψ)[s + q2
n(L + γ)]

{
Pn2π2Ta(1 + sΓ )

s(1 + sΓ ) + Pq2
n(1 + sΓΛ)

+
q2
n[s(1 + sΓ ) + Pq2

n(1 + sΓΛ)]
P(1 + sΓ )

}
,

(19)
where q2

n = k2 +(nπ)2 is a global wavenumber that takes into account the horizontal wavenum-
ber and the order of the vertical eigenfunction (n is a positive integer), the maximum instability
i.e. minimum eigenvalue is obtained for n = 1 (fundamental mode). Another new parameter
γ = ψ/(1+ψ) is introduced to simplify the above mathematical expression. Let us now discuss
some limiting cases of the expression Eq.(19). If one sets the rotation rate to zero, one gets the
following expression:

lim
Ta→0

Ra =
q2
n(q2

n + s)(Lq2
n + s)[s(1 + sΓ ) + Pq2

n(1 + sΓΛ)]
Pk2(1 + ψ)(1 + sΓ )[s + q2

n(L + γ)]
, (20)
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this case has been studied thoroughly by Mart́ınez-Mardones et al. [14]. Secondly, consider-
ing the smallness of L in molecular mixtures L ≈ 10−2 and in polymeric suspensions L ∈
[10−4, 10−5] [23,24], one takes the limit L = 0 in Eq.(19) to obtain the following expression:

lim
L→0

Ra =
s(q2

n + s)
k2(1 + ψ)(s + q2

nγ)

{
Pn2π2Ta(1 + sΓ )

s(1 + sΓ ) + Pq2
n(1 + sΓΛ)

+
q2
n[s(1 + sΓ ) + Pq2

n(1 + sΓΛ)]
P(1 + sΓ )

}
.

(21)
Thirdly, taking the limit of a very viscous liquid P→∞, one obtains from Eq.(19) the following
expression:

lim
P→∞

Ra =
(q2

n + s)(Lq2
n + s)

k2q2
n(1 + ψ)[s + q2

n(L + γ)]

{
n2π2Ta(1 + sΓ )

1 + sΓΛ
+

q6
n(1 + sΓΛ)

1 + sΓ

}
. (22)

Fourthly, when both L and ψ vanish, one recovers the pure rotating viscoelastic fluid and
Eq.(19) takes the following form:

lim
L;ψ→0

Ra =
q2
n + s

k2

{
Pn2π2Ta(1 + sΓ )

s(1 + sΓ ) + Pq2
n(1 + sΓΛ)

+
q2
n[s(1 + sΓ ) + Pq2

n(1 + sΓΛ)]
P(1 + sΓ )

}
, (23)

note that in this last case the fraction in front of the curly brackets is considerably reduced. In
particular, both numerator and denominator have lost one power of s. Physically, it is due to
the fact that taking a pure fluid rather than a binary mixture one reduces the degree of freedom
for the appearance of instabilities. This last situation described by Eq.(23) has been studied
previously in [20,25]. Fifthly, when Γ = 0 in Eq.(19), one eliminates the viscoelastic character
of the liquid and one gets the following expression for the Rayleigh number for rotating binary
mixtures:

lim
Γ→0

Ra =
(q2

n + s)(Lq2
n + s)

k2(1 + ψ)[s + q2
n(L + γ)]

{
Pn2π2Ta

s + Pq2
n

+
q2
n(s + Pq2

n)
P

}
, (24)

note that in the Eq.(24) the degree of the numerator and denominator have been reduced by a
factor one in term of s, the complex growth factor. Again, this is due to the fact that removing
the viscoelastic character of the liquid, one looses a mechanism for instability to set up. These
analytical considerations are very interesting because, one sees that the above limit Γ → 0 is
singular and numerically it can lead to artefacts if it is not appropriately dealt with. The study
of Eq.(24) has been previously considered by Bhattacharjee [17,18] and Kumar [19].

Finally, let us consider the case of interest of this paper i.e. a viscoelastic binary liquid
mixture heated from below. As Eq.(19) is not amenable of analytical treatments, we can proceed
with further simplifications. As we have already commented before, these simplifications must
not alter the generality of the analysis, i.e. one can not reduce the degree of the numerator or
denominator in term of s, the linear complex growth factor. Two regular (opposed to singular)
limiting cases are however possible in Eq.(19), one is obtained by taking the limit of very viscous
mixtures P→∞ and the second simplification is obtained by considering a Maxwellian mixture
Λ = 0, one gets for the Rayleigh number:

Ra(s) =
(q2

n + s)(Lq2
n + s)

k2q2
n(1 + ψ)[s + q2

n(L + γ)]

{
n2π2Ta(1 + sΓ ) +

q6
n

1 + sΓ

}
, (25)

this last expression is an analytical function of the complex variable s and one can use the
standard tools of complex analysis to study this function [26]. In particular, the threshold
for linear instability is obtained by setting σr = 0 and s = iΩ in the complex expression
Eq.(25). Due to the fact that the Rayleigh number is a physical parameter, the imaginary part
of Eq.(25) must vanish and the real part gives the marginal stability curve Ra = Ra(k, Ω).
This condition, together with the condition of an extremum of the function at the critical point
∂k(Re[Ra])|k=kc = 0 allow to determine the critical wavenumber kc and the frequency Ωc of
the linearly most dangerous perturbation and its corresponding critical Rayleigh number Rac.

Figure 1 displays the variation of the critical Rayleigh number as a function of the Deborah
number Γ for a rotating Maxwellian mixture (Λ = 0) and for two different values of the rotation
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Fig. 1. Free–Free boundary conditions: Critical Rayleigh number as a function of the Deborah number
for the oscillatory instability of a rotating Maxwellian mixture. Parameters values are L = 10−4;
ψ = −10−4 and two rotation rates Ta = 10 (black squares) and Ta = 103 (red dots).

Fig. 2. Free–Free boundary conditions: Frequency of the perturbation at threshold as a function of
the Deborah number for the oscillatory instability of a rotating Maxwellian mixture. Parameters values
are the same as in Fig. 1.

rate Ta = 10 and Ta = 103 (the angular velocities corresponding to these values of the Taylor
number, for a depth layer of one centimetre, correspond to approximately 1.6 10−2 (rad/s) and
1.6 10−1 (rad/s), respectively), the parameters related to the binary character of the mixture
have been set in order to describe as closely as possible DNA suspensions, the Lewis number
is set to L = 10−4 and the separation ratio is set to a small negative value ψ = −10−4. For
low values of the Deborah number Γ the critical Rayleigh number Rac remains nearly constant
while it substantially decrease at larger value of the Deborah number. Also, the rotation rate
modify the value at which the transition is observed. In particular, the larger is the Taylor
number, the larger is the Deborah number at which the transition occurs.

At this point, it may be useful to remind the physical meaning of the Deborah number [27].
The Deborah number is a dimensionless number, used in rheology to characterize how “fluid”
a material is. Even some apparent solids “flow” if they are observed long enough; the origin of
the name is the line “The mountains flowed before the Lord” in a song by prophetess Deborah
recorded in the Bible (Judges 5:5). Formally, the Deborah number is defined as the ratio of a
relaxation time, characterizing the intrinsic fluidity of a material, and the characteristic time
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scale of an experiment (or a computer simulation) probing the response of the material. The
smaller the Deborah number, the more fluid the material appears.

Therefore, the results for the thermal convection in a rotating Maxwellian mixture indicate
that when considering a stiffer fluid (due to its viscoelastic character) its thermal convective
threshold is lowered. This is not an intuitive result. Another result which is common with the
Newtonian fluids is that the rotation has a stabilizing effect on the layer, the larger is the Taylor
number, the larger is the instability threshold Rac.

Figure 2 displays the frequency corresponding to the most dangerous perturbation at thresh-
old (Ωc) as a function of the Deborah number Γ . This plot must be put in direct correspondence
to the Fig. 1, in particular, the mild inflexion in the curve of Rac versus Γ shown in Fig. 1
corresponds to a strong discontinuity in the curve of (Ωc) versus Γ as shown in Fig. 2. Note that
the scale in Fig. 2 is logarithmic. After the discontinuity, the frequency remains quasi constant
for increasing values of Γ .

3.2 Realistic boundary conditions

The use of free–free boundary conditions (W = D2W = 0) at the two horizontal boundaries
is a useful mathematical simplification but it is not physically sound. The correct boundary
conditions for a viscous or viscoelastic fluid is to impose (W = DW = 0) at the two horizontal
boundaries. In order to solve the set of ordinary differential equations (15–18), we have used a
spectral method. Spectral methods ensure an exponential convergence to the solution and are
the best available numerical techniques for solving simple eigenvalue-eigenfunction problems.
Here, we have followed the technique of collocation points on a Chebyschev grid as described
by Threfethen [28]. We have determined that for the resolution of Eqs.(15–18) 14 collocation
points in the vertical direction are enough to ensure spectral convergence. The collocation points
(Gauss–Lobato) are located at height: zj = cos(jπ/N) where index j runs from j = 0 to j = N
(here N = 14) [28]. The equations and the boundary conditions are expressed at the collocation
points. By doing so, the set of differential equations (15–18) is transformed into a set of alge-
braic equations. The eigenfunctions (Θ(z), Φ(z), W (z), Z(z)) are transformed into eigenvectors
defined at the collocation points. The Rayleigh number is again used as the eigenvalue of the
problem. After this stage of discretization, one is left with a classical eigenvalue–eigenvector
problem that can be easily solved by using a Matlab routine.

0 10 20 30 40 50
k

0

10000

20000

30000

40000

50000

Ra

Fig. 3. Rigid–Rigid boundary conditions: Stability curve, the Rayleigh number as function of the
wavenumber k, showing multistability. Parameters values are L = 10−4; ψ = −10−4; Γ = 0.155 and
rotation rate Ta = 105.
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0 10 20 30 40 50
k

0

50

100

150

Ω

Fig. 4. Rigid–Rigid boundary conditions: Frequency versus wavenumber, all the minima of Fig.3 are
oscillatory (non vanishing frequency). Parameters values are the same as in Fig. 3.

Since the Rayleigh number is a physical quantity which is real, one has to select Ω in order
to get a vanishing imaginary part for the Rayleigh number Ra. As it has been shown in Eq.(25)
for the free–free case and due to the fact that the expression for the Rayleigh number is a ratio
of polynomials in s, one can get multiple solutions (branches in the complex plane) i.e. various
values of Ω that make the imaginary part of Ra to vanish. In case of multiple solutions, we
have always selected the one that corresponds to the lowest value of the Rayleigh number (the
most unstable one). By doing so, one is left with a triplet (Ra, k, Ω) that define a marginal
stability condition. This procedure is repeated for several values of the horizontal wavenumber
k. These points serve to draw the marginal stability curve Ra versus k. The minimum of this
curve gives the Rac and kc, and the corresponding value for the critical frequency Ωc.

Figures 3 shows the stability curve for Ta = 105 and Γ = 0.155

0 0.05 0.1 0.15 0.2
Γ

0

5000

10000

15000

20000

Ra
c

Fig. 5. Rigid–Rigid boundary conditions: Critical Rayleigh number as a function of the Deborah
number (Γ ). Parameters values are L = 10−4; ψ = −10−4; and rotation rates Ta = 10 (black solid
line), Ta = 103 (red dashed line), Ta = 105 (green dotted line) .

The results of the stability analysis in the case of rigid–rigid conditions are displayed in
Figs. 5 and 6.

Using the same criterion as for Figs. 1 and 2, one depicts the variations of Rac and Ωc

as function of the Deborah number Γ for a rotating Maxwellian mixture. One observes that
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50

100

150

200

Ω
c

Fig. 6. Rigid–Rigid boundary conditions: Critical frequency as a function of the Deborah number (Γ )
showing that for large Taylor discontinuities in the critical frequency are frequent. Parameters values
are the same as in Fig. 5.

as usual in thermal convection, the rotation has a stabilizing effect i.e. the critical Rayleigh
number is increased when the Taylor number is increased (see Fig.5). In addition, the influence
of the Deborah number is more pronounced in the rigid–rigid case than in the free–free case
and especially for high rotation rate, this is presumably due to the stronger coupling of the
vorticity field and the viscoelastic character of the fluid when realistic rigid–rigid boundary
conditions are used. The most striking difference between the two cases is found by comparing
the critical frequencies (see Figs. 2 and 6), in the rigid–rigid case, the critical frequency is of order
one hundred and experiences many discontinuities due to competing instability mechanisms
when the Deborah number is increased while for the free–free case, the frequencies are order
of magnitude smaller and undergo discontinuities for larger Deborah number. In the present
problem, one has four potential sources of instability (thermal, binary, rotation and viscoelastic
character) which lead to several possible exchange of stability or discontinuity in the critical
curves as it is clearly observed in Figs. 3.

4 Conclusions

In the present work, Rayleigh-Bénard convection in a Maxwellian binary mixture under rota-
tion has been studied. We have determined the stability thresholds for oscillatory convection
for both free–free and rigid–rigid boundary conditions. Due to the mixing of several motors
for instability i.e. buoyancy, compositional gradients, rotation and viscoelastic character, the
stability curves exhibit several branches. these different instability mechanisms are competing
when the Deborah number is varied. One observes that the critical frequency is a discontinu-
ous function (see Fig. 6) when the Deborah number is increased. In planning new experiments
with binary mixtures of viscoelastic liquid (in particular DNA suspensions), one has to be
very careful because one sees that minute changes in parameters may induce large variations
in thresholds and frequencies due to the complexity of the problem. These recommendations
apply also for the design of new PCR techniques based on Rayleigh–Bénard convection cells of
DNA suspensions.

We emotionally dedicate this article to the memory of professor Carlos Pérez-Garćıa (Q.E.P.D.) for his
motivations and fruitful interchange of ideas about hydrodynamics instabilities.
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