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Abstract

We prove that every dense subgroup of a topological Abelian group
has the same ”convergence dual” as the whole group. By the ”conver-
gence dual” we mean the character group endowed with the continu-
ous convergence structure. We draw as a corollary that the continuous
convergence structure on the character group of a precompact group is
discrete and therefore a non-compact precompact group is never reflex-
ive in the sense of convergence. We do not know if the same statement
holds also for reflexivity in the sense of Pontryagin; at least in the
category of metrizable Abelian groups it does.
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1 Introduction and Preliminaries

The existence and properties of proper dense subgroups of topological groups
has received much attention from different points of view, and there are
many good and deep results for example in the class of pseudocompact
groups. Some properties P like metrizability, admit the following statement:
”A dense subgroup H of a topological group G has P if and only if G has
P”. So there are properties for which a dense subgroup already gives the
information of how the whole group behaves with respect to it. In the present
paper we are mainly concerned with how dense subgroups of locally compact
Abelian groups behave with respect to different sorts of ”reflexivity”, and
how the duals of such subgroups determine the dual of the whole group.

By a continuous character on an Abelian topological group G it is com-
monly understood a continuous homomorphism from G into the unit circle
T of the complex plane, endowed with the Euclidean topology. Under multi-
plication the continuous characters on G constitute a group denoted by ΓG,
and called the dual group of G. A continuous character defined on a dense
subgroup H of a topological Abelian group G can be extended to the whole
group, due to the fact that characters are uniformly continuous mappings.
This leads to the algebraic identification of the corresponding dual groups
ΓG and ΓH.

On the other hand, inspired by the Pontryagin-van Kampen duality the-
ory, it is ”natural” to consider the compact open topology for the dual of a
group. In general we will write G∧ for ΓG endowed with the compact open
topology, and call it the Pontryagin dual or simply the dual group. If again
H is a dense subgroup of an abelian topological group G, H∧ may be quite
different from G∧. The above mentioned algebraic identification does not
extend to the topological context.

This fact gives rise to a new class of groups. A topological Abelian group
G will be called a determined group if for any dense subgroup H < G, the
restriction mapping from G∧ to H∧ is a topological isomorphism; roughly
speaking, if the respective dual groups equipped with the compact open
topology coincide algebraically and topologically. Metrizable Abelian groups
are determined, as proved by the first author in [9], and independently in [1].
The name ”determined group” appeared for the first time in Raczkowski’s
doctoral thesis [15], where she proves that even compact groups may be non
determined.

Along the paper all the groups considered will be Abelian. A basis
of neighborhoods of the neutral element for the compact open topology
τco is given by the sets (K,Tε) := {ϕ ∈ ΓG : ϕ(K) ⊆ Tε}, where Tε =
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{z ∈ T : |z − 1| ≤ ε} and K is a compact subset of G. Clearly G∧ is a
Hausdorff topological Abelian group. The polar of a subset A ⊂ G is the
set A. := {ψ ∈ ΓG : ψ(A) ⊆ T+} being T+ = T√2. The inverse polar of
a subset B of ΓG is the set B/ := {x ∈ G : ψ(x) ∈ T+,∀ψ ∈ B}. The
quasi-convex hull of a subset A ⊂ G is qc(A) := A./; the set A is said to
be quasi-convex if qc(A) = A. A topological Abelian group is locally quasi-
convex if it admits a basis of neighborhoods of zero formed by quasi-convex
sets. A natural example of a locally quasi-convex group is the underlying
group of a locally convex space [2].

A topological Abelian group G is said to be reflexive if the canonical
mapping αG : G → G∧∧ given by αG(x)(κ) = κ(x) is a topological isomor-
phism. The class of reflexive groups is a natural extension of that of locally
compact Abelian groups (LCA-groups) via the well known theorem of Pon-
tryagin van-Kampen, which states that LCA-groups are reflexive. Further-
more, the dual group G∧ of a locally compact Abelian group G, is again
locally compact and the evaluation mapping eG : G×G∧ −→ T (defined by
eG(g, ξ) = ξ(g)) is continuous.

This fact seldom happens out of the class of LCA-groups; for an arbitrary
group G, if the continuity of the evaluation mapping is to be achieved, some
τco-convergent nets of ΓG must be killed. In doing so, a new convergence
structure is obtained which is no longer a topology; it is called the continuous
convergence structure. If a group G is endowed with a convergence structure
which is compatible with the algebraic structure of G, then it is said to be
a convergence group. All topological groups can be treated as convergence
groups. See [4] for a more detailed formulation.

If G is a convergence Abelian group, the continuous convergence struc-
ture Λ on ΓG is defined as the coarsest among all those convergence struc-
tures in ΓG which make continuous the evaluation mapping eG : G×ΓG −→
T. If the group G is locally compact the continuous convergence structure on
ΓG coincides with the compact open topology, in other words they have the
same convergent nets. It can be explicitly defined either by its convergent
filters or by its convergent nets, as we do next.

A filter F in ΓG converges in Λ to an element ξ ∈ ΓG if for every
x ∈ G and every filter H in G that converges to x, ω(F ×H) converges
to ξ(x) in T (here, F × H denotes the filter generated by the products
F × H, where F ∈ F , H ∈ H and ω(F ×H) is the filter generated by
ω(F × H) := {f(x); f ∈ F, x ∈ H}). Equivalently, a net {ξα, α ∈ A} in
ΓG is Λ-convergent to ξ ∈ ΓG (or continuously convergent) if for every
net {xβ, β ∈ B} in G such that xβ → x, the net {ξα(xβ)}, indexed by the
product A× B and directed in the natural way, converges in T to ξ(x).
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Every convergent filter in Λ has a compact element, that is to say that Λ is
a locally compact structure, see [5].

The pointwise multiplication in ΓG as well as taking the inverse are
continuous operations with respect to the continuous convergence structure.
Therefore it makes sense to call the pair (ΓG,Λ) the convergence dual or the
BB-dual of G, henceforth denoted ΓcG. The corresponding duality has been
systematically studied in [4]. A convergence group G is called BB-reflexive
if it is canonically isomorphic to its convergence bidual ΓcΓcG. The term
BB-reflexive and the names alike were introduced by us in [8], after Binz
and Butzmann who were the first to apply successfully the theory of duality
to convergence vector spaces and convergence abelian groups.

The topology on G of pointwise convergence in the elements of ΓG,
denoted by σ(G,ΓG), is usually called the Bohr topology of G; the symbol
Gb stands for the group G endowed with its Bohr topology. The completion
of Gb is usually named the Bohr compactification of G. It is denoted by bG
and it is exactly (G∧d )∧, where G∧d denotes the character group ΓG endowed
with the discrete topology.

The sets ΓGb and ΓG coincide [11], although in general the compact open
topology in ΓGb is finer than the compact open topology in ΓG. Nevertheless
(ΓGb, τco) and (ΓG, τco) coincide algebraically and topologically for a nuclear
group G [3]. We remark that the class of nuclear groups is a big class
of topological groups which includes LCA groups, and is closed by taking
subgroups, arbitrary products and quotients, [2]. Analogously, we denote
by σ(ΓG,G) the topology in ΓG of pointwise convergence on the elements
of G.

2 The convergence-dual of a dense subgroup

The main result of this section is the fact that all abelian groups are deter-
mined from the point of view of convergence, as expressed in Theorem 3.
This leads to the simple observation that the convergence dual of a group
endowed with its Bohr topology is discrete (Corollary 6).

Lemma 1 Let H be a dense subgroup of a topological Abelian group G.
Then, ΓH may be identified with ΓG and the corresponding families of
equicontinuous subsets coincide, i.e. E(ΓH) = E(ΓG).

Proof. The first assertion is a consequence of the well known fact that every
continuous character on a dense subgroup can be continuously extended to a
character on the whole group in a unique way. From now on we identify the
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sets ΓG and ΓH. For the second assertion, the inclusion E(ΓH) ⊃ E(ΓG)
follows directly from the definition of equicontinuity. Conversely, let M ∈
E(ΓH), and let V be open neighborhood of the neutral element of H such
that M ⊂ V .. Denote by W an open neighborhood of the neutral element
of G, with W ∩H = V . We have that:

V . = (W ∩H). = (W ∩H). = W
.

Thus, M ⊂W
. proves that M ∈ E(ΓG).

Lemma 2 A net {ξα, α ∈ A} in ΓG is Λ-convergent to an element ξ ∈ ΓG
if and only if its range is eventually equicontinuous and it converges to ξ in
the pointwise topology of ΓG.

Proof. The proof is a direct computation. By eventually equicontinuous
range we mean that there exists α0 ∈ A such that {ξα, α ≥ α0} ∪ {ξ} is an
equicontinuous subset.

Theorem 3 Let H be a dense subgroup of a topological Abelian group G.
The continuous convergence structures in ΓG and in ΓH coincide.

Proof. Let us call Λ(ΓG) and Λ(ΓH) the continuous convergence struc-
tures in ΓG and in ΓH respectively. Such a distinction is convenient because
ΓG and ΓH so far are identified as sets, but not as convergence groups. Let
S = {ξα, α ∈ A} be a net in ΓG = ΓH. By the definition of the continuous
convergence structure, if S converges to ξ in Λ(ΓG) it obviously converges
to ξ in Λ(ΓH).

For the converse implication suppose now that S → ξ in Λ(ΓH). Its
range is eventually equicontinuous in ΓH (without loss of generality suppose
S has equicontinuous range) and by Lemma 1 it is also equicontinuous in
ΓG. Therefore, a zero-neighborhood U ⊂ G can be found such that S =
{ξα, α ∈ A} ⊂ U.. Since U. ⊂ TG is clearly compact in the pointwise
convergence topology σ(ΓG,G), the net S has a σ(ΓG,G)-convergent subnet
T , say T → ψ ∈ ΓG.

On the other hand, a σ(ΓG,G)-convergent net with equicontinuous range
is also Λ(ΓG)-convergent with the same limit. Therefore the subnet T must
converge to ξ. The same argument proves that every subnet of {ξα, α ∈ A}
has in turn a subnet converging to ξ in Λ(ΓG). Thus ξα → ξ in Λ(ΓG).

In [4] it is proved that a topological group and its completion admit the
same convergence dual. This is a consequence of the above theorem.
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Corollary 4 A proper dense subgroup H of a LCA-group G, cannot be BB-
reflexive. If H is metrizable, it cannot be either Pontryagin reflexive.

Proof. By Theorem 3, the group ΓcH is bicontinuously isomorphic to
ΓcG. Since G is a LCA-group, ΓcG coincides with G∧ which is also locally
compact. On the same ground, ΓcΓcG coincides with G∧∧. Now ΓcΓcH
is bicontinuously isomorphic to ΓcΓcG, which is a LCA-group. Therefore
ΓcΓcH cannot be bicontinuously isomorphic to H, for otherwise H would
be locally compact, and this contradicts the density of H in G.

The second assertion comes from the fact that Pontryagin reflexivity and
BB-reflexivity are equivalent for metrizable groups (see [9]).

Next we draw some consequences for the Bohr topology on a topological
group.

Corollary 5 For an Abelian noncompact topological group G, Gb cannot be
BB-reflexive.

Corollary 6 For an Abelian topological group G, ΓcGb is discrete.

Proof. The group Gb is a dense subgroup of bG, and by Theorem 3,
ΓcGb is bicontinuously isomorphic to Γc(bG). Since bG is compact, Γc(bG)
is discrete.

Remark 1 Observe that from Corollary 6, we can claim that the Bohr com-
pactification bG of a topological group G is exactly the convergence bidual
ΓcΓcGb. This simple observation was not stated earlier in the Literature.

3 Pontryagin dual of a dense subgroup

In this section we deal mainly with LCA-groups. The continuous conver-
gence structure Λ in the dual of a LCA-group G coincides with the conver-
gence defined by the compact-open topology τco. Nevertheless this assertion
does not hold for dense subgroups of G. Next, we study some requirements
that a dense subgroup of a LCA-group must satisfy in order that its charac-
ter group with the compact-open topology coincides with that of the whole
group.
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Proposition 7 Let H be a dense subgroup of a LCA-group G. The follow-
ing assertions are equivalent:

a) The dual groups H∧ and G∧ are topologically isomorphic, that is
τco(ΓH) = τco(ΓG)

b) The continuous convergence Λ(ΓH) coincides with the convergence
defined by τco(ΓH)

c) The evaluation mapping eH : H ×H∧ −→ T is continuous
d) The dual group H∧ is locally compact and αH : H −→ H∧∧ is con-

tinuous.

Proof. a)⇒ b) Since G is locally compact, Λ(ΓG) = τco(ΓG).
This together with the equality Λ(ΓG) = Λ(ΓH) obtained in Theorem 3

and a) give Λ(ΓH) = τco(ΓH).
b)⇒ c) For the LCA group G the evaluation mapping eG : G×G∧ −→ T

is continuous and Λ(ΓG) = τco(ΓG). By Theorem 3 and b), eH : H×H∧ −→
T is the restriction of eG, therefore it is continuous.

c)⇒ d) This appears in [14]
d)⇒ a) Since αH is continuous, any τco-compact subset C ⊂ ΓH is

equicontinuous in ΓH and by Lemma 1 also in ΓG. This implies that C is
τco-compact in ΓG. Taking into account thatH∧ is locally compact, τco(ΓH)
and τco(ΓG) are two k-topologies with the same compact subsets, thus they
must coincide.

Remark 2 The continuity of the evaluation mapping eH : H×H∧ −→ T is
a strong requirement. In fact, in the class of reflexive groups (see [13]) the
continuity of eH implies that the group H must be locally compact. The same
assertion is obtained for the class of topological groups with the property that
the quasi-convex hull of compact sets are again compact (see [14] ).

The topological modification of Λ, denoted by τΛ, is the topology on ΓG
defined by the following assertion: A subset C of ΓG is closed in τΛ if and
only if it contains the limit points of every Λ-convergent net contained in C.
It is straightforward to check that τΛ is in fact a topology, but in general it
fails to be a group topology. By its definition τΛ is the finest topology of all
those coarser than Λ. It is finer than the compact open topology and if G
is metrizable, then τΛ = τco [9].

For further use we mention the following facts which can be easily de-
duced from our previous considerations:

Lemma 8 Let G be a topological group and L ⊂ ΓG. Then:
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(i) L is Λ-compact if and only if it is equicontinuous and Λ-closed.
(ii) If L is equicontinuous, the induced convergence Λ |L is topologi-

cal; namely, it coincides with the convergence associated to the topology
σ(G∧, G).

(iii) The topological modification τΛ of the continuous convergence in the
dual of a topological Abelian group G is a k–topology.

It is proved in [7] that τΛ is the weak topology with respect to the family
of all equicontinuous subsets of ΓG, and therefore it is the finest topology
of all those which induce σ(ΓG,G) in the equicontinuous subsets of ΓG.
In the same reference it is asked the following: whenever τΛ is a group
topology in the dual of a topological group, must it be the k-extension of
the corresponding compact-open topology?. We provide a negative answer
in the corollary below.

Proposition 9 Let G be a topological group such that αG : G −→ G∧∧ is
continuous. The topology τΛ is the k–extension of the compact-open topology
on ΓG.

Proof. The relationship among convergences is : Λ-convergence ⇒ τΛ-
convergence ⇒ τco-convergence. If αG is continuous every subset which
is compact in the compact-open topology is also Λ-compact. Thus, the cor-
responding families of compact subsets coincide. By (iii) in the previous
Lemma, τΛ is the k–extension of τco.

Corollary 10 If G is a locally compact noncompact topological group, the
topology τΛ in ΓGb is a group topology, but it is not the k–extension of the
compact-open topology in the same space.

Proof. The topology τΛ is discrete, since the continuous convergence struc-
ture in ΓGb is already discrete (Corollary 6). On the other hand, taking
into account that Bohr-compact subsets coincide with the original compact
subsets of G (by Glicksberg theorem), the compact open topologies for the
groups ΓG and ΓGb are identical. Therefore (Gb)∧ = G∧ is a k-space which
cannot be discrete, for otherwise (Gb)∧∧ = G∧∧ would be compact, and by
Pontryagin Theorem also G would be compact.

If the dual of a precompact noncompact group is discrete, the group
itself cannot be reflexive. From Corollary 10 it is clear that there exist also
nonreflexive precompact groups with nondiscrete duals. This leads us to the
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following:
Question. Is a precompact abelian group necessarily nonreflexive?

Remark 3 From Corollary 10 and Proposition 9 it can be obtained that for
a noncompact LCA-group G, the canonical mapping αGb

is not continuous.

4 Topological Abelian groups whose compact sub-
sets are finite

Lemma 11 If the compact subsets of a topological group G are finite, then
G∧ is topologically isomorphic to (G∧)b.

Proof. Since compact subsets of G are finite, the compact open topology
on ΓG coincides with σ(ΓG,G). On the other hand G∧∧ = (ΓG, σ(ΓG,G))∧

can be algebraically identified with G, since its elements are the evalua-
tion mappings on points of G. Now the Bohr topology in G∧ is precisely
σ(ΓG,G).

Next we collect some results about P -groups. We remind that a topolog-
ical spaceX is a P -space if all of its Gδ-sets are open. An Abelian topological
group which is a P -space is called a P -group.

Lemma 12 Suppose G is a P -group. Then:
1) Compact subsets of G are finite.
2) There exists in G a basis of neighbourhoods of the neutral element

whose elements are open subgroups.
3) G can be embedded in a product of discrete groups.
4) G is a nuclear group.
If furthermore G is complete, then:
5) G is an inverse limit of discrete groups.
6) αG is an open isomorphism.
7) G is BB-reflexive
8) G∧ is precompact and αG∧ is continuous.

Proof. 1) and 2) are well known facts and 3) can be obtained as a
corollary of 2). The fact that G is nuclear can be derived from [2, 7.6, 7.3
and 7.5]. For 5) see [12, 3.5]. 6) is [1, 29.5] and 7) can be seen in [6, 4.4].

For 8) take into account that as a consequence of 1), the compact-open
topology in ΓG coincides with that of pointwise convergence σ(ΓG,G), and
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therefore G∧ can be identified with a subgroup of a product of copies of T.
On the other hand, αG open and bijective implies that the compact subsets
of G∧∧ are finite, therefore equicontinuous and this in turn implies that αG∧

is continuous [1, 5.10].

Let us give an example of a P -group and its dual group.
Example

Consider the cyclic group Z(n) of order n ≥ 2 and a set I of cardinality
greater or equal than continuum. Take the product of I-copies of Z(n), say
Z(n)I . Let G be the direct sum Z(n)(I), with the group topology whose
basis of zero-neighborhoods are the direct sums

⊕
i∈I Ui, where Ui = Z(n)

except for a countable set H ⊂ I, and Ui = {0} for all i ∈ H.
It is clear that G is a P -group and easy computations allow us to see that

its Pontryagin dual G∧ is the Σ-product
∑ Z(n), as a topological subgroup

of Z(n)I with the product topology.
By Lemma 11 G∧ is precompact . On the other hand, the dual of the

Σ-product
∑ Z(n) coincides with the dual of the full product Z(n)I since

it is proved in [10] that the direct sum of compact groups determines the
corresponding product. Then, the Pontryagin bidual G∧∧ is Z(n)(I) with
the discrete topology.

Remark 4 Observe that αG∧ in the above example is continuous, which is
in contrast with Remark 3.

We do not know if the bidual of any P -group is necessarily discrete. This
is in connection with the following question of Salvador Hernández: Is every
Pontryagin reflexive P -group discrete? Were the answer negative, we would
solve the question mentioned after Corollary 10. In fact, if there exists a
nondiscrete Pontryagin reflexive P-group, its dual must be precompact and
reflexive.
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