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Abstract

Three hyperchaotic systems coupled asymmetrically between identical
pairs are analized in order to look for general features in synchronization
among them. Lyapunov Exponents (LE) has been calculated and plotted
as a function of a coupling parameter and a symmetry parameter. By this
way is possible to recognize some special regions where the complexity is
reduced and some kind of synchronization exists.
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1. Introduction

Hyperchaotic behavior appears in a nonlinear dynamical system when more
than one Lyapunov exponent becomes positive and normally arises as a natural
regime in extended space-time systems, delayed systems or in situations where
many oscillators are coupled (a normal situation in complex networks).

In all of these cases, it is usually very difficult to understand what is hap-
pening physically inside the system for different reasons, like the presence of
spatial symmetries restricting the possible solutions, or delays transforming
the system into an infinite-dimensional one. But sometimes, when the attrac-
tors presents some kind of symmetry properties it is easier to take a clear point
of view about the system’s dynamics [1].

In a recent paper [2] we reported an analysis of a several low dimensional
systems on which windows of synchronization appear suppressing the chaotic
oscillations. In this work we analyze the effects of the asymmetric coupling in
the hyperchaotic extension for some chaotic attractors as Chen or Lü and an-
other attractor with some symmetry properties [3]. The effects of the coupling
varies from the kind of synchronization achieved to the chaos suppression. Also
some general conclusions will be reported.
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2. Chen Attractor

Chen’s System [4] is a very important reference in the field of the hyperchaotic
attractors. In this work we used the equation set that appears in [5]. Intro-
ducing some differences in order to couple two identical attractors between
them. Instead of use the coupling matrix and then look for the Master Stabil-
ity Function as it was proposed in [6] we introduce two parameters for coupling
them. One related to the symmetry (θ) and the other to the coupling strength
(ε).

The θ parameter selects which is the driver or the driven in the coupled
system. Note that the Master-Slave configuration is one specific case, that
occurs when θ is equal −1 or 1. Also it is possible a symmetric coupling when
θ = 0. So all the cases are constrained to be in θ ∈ [−1, 1].

On the other side, ε parameter is used for setting the coupling strength
between two variables. The interval of values of ε is [0,∞), the “effective”
range depends on the maximum amplitude of the signal variable. Then ε can
not be normalized easily because the maximum amplitude changes with ε. So,
a new normalization must be done for each value of ε, and this requires a lot
of time for data processing.

Once the considerations above have been done, it is possible to write the
equation set as follows:

ẋ1,2 = a(y1,2 − x1,2) +
εx

2
(1± θx)(x2,1 − x1,2)

ẏ1,2 = −dx1,2 − x1,2z1,2 − cy1,2 − w1,2 (1)
ż1,2 = x1,2y1,2 − bz1,2

ẇ1,2 = x1,2 + k

The asymmetric coupling is done through x variables. The parameter
values are a = 36, b = 3, c = 28, d = 16 and being k a fixed time delay.
In this work this delay is set for obtaining an hyperchaotic attractor [7]. For
further information, there is an study of the Chen’s dynamics using k as control
parameter [8].
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Figure 1: In this figure the first and the fourth largest Lyapunov Exponents
are shown in (a) and (b). The value of the exponent is represented by the
color and the corresponding values is shown in each colorbar. The coupling
strength is represented in the abscissa and the symmetry of the coupling in
the ordinate.

Figure 2. shows some colormaps where the Lyapunov Exponents appear as
a function of the coupling strength (abscissa axis) and the symmetry parameter
(ordinate axis), the most red coloured belongs to the largest value for LE. The
1st and the 4th largest LE are shown in (a) and (b) respectively. In (c) is show
the number of positive LE, and the sum of them is shown in (d) in order to
provide an upper boundary for the entropy of the system.

These results show a similar behavior reported in [2], which corresponds
to an “island” where the Lyapunov Exponents decrease. In this case, the
island is observed clearly in the 4th largest Lyapunov Exponent instead of the
largest Lyapunov Exponent. Note that the effect of the island affects at other
LE also, but in both cases in the closest-to-zero positive exponent there is a
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transition among positive and negative values. Due to the LE’s are crossing
through cero hyperchaos suppression occurs within the islands.

The chaotic Chen’s basin of attraction shows the riddled property [5]
for an specific region of the attractor. In these numerical simulations this
behavior is extended to more regions inside the coupled attractor because a
bubbling transition [9] arises and the system becomes more unstable. These
effects can be checked in the Lyapunov Exponent map as some “spikes” that
appear inside. An interesting property of this riddled basin is that different
initial conditions involve different dynamic behaviors from chaos suppression,
as occurs in [2] to a decrease in the autocorrelation signal. This property was
not cited in [5].

3. Lü Attractor

Another famous chaotic attractor is the Lü attractor which is the transition
model between the chaotic Chen attractor and Lorenz attractor [10]. But
this work is focused on the hyperchaotic attractors, so the model used is an
extended version to hyperchaos generated via state feedback control [11]. The
coupling model is the same that it was used with the Chen attractor, so the
coupled equation set is written as follow:

ẋ1,2 = a(y1,2 − x1,2) + w1,2 +
εx

2
(1± θx)(x2,1 − x1,2)

ẏ1,2 = −x1,2z1,2 − cy1,2 (2)
ż1,2 = x1,2y1,2 − bz1,2

ẇ1,2 = x1,2z1,2 + dw1,2

The parameters do not vary too much respect the Chen’s values due to in
both cases the Lorenz was the reference. There are several articles where the
bifurcation diagrams and the dynamics changing the parameter values were
studied [8, 12, 13], but in this work we set the parameter values as a = 36,
b = 3, c = 20 and d = 1, in order to obtain an hyperchaotic attractor with 2
positive LE [11].

The largest Lyapunov Exponent against the coupling and the symmetry
parameter is shown in the figure 3. (a). Note that some islands appears at
coordinates εx ≈ 3 and θx ≈ ±0.2. These islands are not an effect of the
riddled basin [9], they arise from the coupled attractor’s equation system.

Also the number of the positive LE is shown in the figure 3. (b). Note
that in these islands hyperchaos suppression is achieved by the asymmetric
coupling because the number of positive LE decays to zero.
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Figure 2: The largest LE is represented in (a) as a function of the coupling
strength (abscissa) and the symmetry (ordenate) for the asymmetrically cou-
pled Lü identical attractors. The value of the exponent is represented as a
color of the colorbar. The number of positive LE is shown in (b)
.

4. A Takens-Bogdanov Attractor

The last attractor studied in this work is a mathematical model used in time-
dependent pattern formation processes [3]. The hyperchaotic oscillator was
studied in [14]. The following equation set was used:

x′1,2 = y1,2 +
εx

2
(1 + θx)(x2,1 − x1,2)

y′1,2 = µx1,2 + x1,2(a(x2
1,2 + z2

1,2) + bz2
1,2) (3)

z′1,2 = w1,2

w′1,2 = µz1,2 + z1,2(a(x2
1,2 + z2

1,2) + bx2
1,2)

Applying the same method for numerical simulations, some of the Lya-
punov Exponents maps obtained are shown in figure 4..

Some discussions about the synchronization of two identical symmetri-
cally coupled attractors was done in [15], and we report here some results
considering asymmetric coupling.

As it can be seen in the figure 4., this system has a very “sensitive” riddled
basin. Also the two largest LE are not modified in the same way of the other
ones, due to the symmetry and the hyperchaotic behavior .
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Figure 3: The first, second and fifth largest LE are shown in (a),(b) and (c).
The value of the exponent is represented in colorbar for each plot. The abscissa
is the coupling strength and the symmetry factor is the ordinate. The sum of
all the positive LE is shown in (d).

5. Conclusions

Calculations of the LE of two asymmetrically coupled identical hyperchaotic
attractors as a function of θ, the coupling symmetry, and ε, the coupling
strength parameter.

Each hyperchaotic system presents a “fingerprint” in the LE map. In
this region some of the positive LE decrease suddenly. The complexity of the
system is reduced and some kind of synchronization appears.

From the analysis performed we conclude also that an increase in the
coupling strength does not necessarily imply a decrease in the complexity of
the system or in a better synchronization. The master-slave configuration



G. Vidal, H. Mancini 7

(unidirectional coupling) it is not the best option to reduce the complexity of
the coupled system as in can be seen in the figures 2. and 3..

On the other side, the asymmetrical coupling allow to change the dynam-
ical properties of a system, and in some cases permits hyperchaos suppression
as occurs in Lü and Chen systems. This hyperchaos suppression does not
imply complete synchronization, as it was exposed in [15]. As example, the
hyperchaotic Chen attractor the complete synchronization is achieved by hy-
perchaos suppression. Instead of the hyperchaotic Takens-Bogdanov and Lü
attractors where the complete synchronization is achieved, but in different
regions of the LE map related with the decrease of LE.
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