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Universidad de Navarra, Spain

Received March 14, 2008; Revised April 28, 2008

We study two identical hyperchaotic oscillators symmetrically coupled. Each oscillator repre-
sents a codimension-2 Takens–Bogdanov bifurcation under square symmetry, and was used to
model a convection experiment in a time-dependent state. In the coupled system, the Lyapunov
exponents behavior against the coupling parameter is used to detect changes in the dynamics,
and the synchronization state is controlled by checking the phase planes. Complete synchro-
nization is achieved without chaos suppression in a coupling parameter interval. Outside this
window, complete synchronization cannot be generally achieved. As a consequence of a bubbling
transition, synchronization is obtained only for some particular values of the initial conditions.
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1. Introduction

Since the Pecora and Carroll paper in 1990 [Pecora
& Carroll, 1990], chaos synchronization has been
developed as a very active field in science. Differ-
ent regimes of synchronization [Boccaletti et al.,
2001] have been reported in almost all the classical
models of low dimensional chaotic systems in non-
linear dynamics [Lorenz, 1963; Rössler, 1976; Mat-
sumoto, 1984], with important applications in many
fields from basic physics to electronic circuits, engi-
neering, biology or economy [Pikovsky et al., 2001;
Boccaletti et al., 2002].

Moreover, coupled maps [De San Roman et al.,
1998], model equations like Ginzburg–Landau or
delayed systems [Boccaletti et al., 2000] have been
shown to be synchronized, both between identi-
cal or nonidentical systems, and under symmet-
ric or asymmetric coupling [Boccaletti et al., 1999;
Bragard et al., 2003]. Experimental evidence of syn-
chronization in a chaotic convective flow [Maza
et al., 2000] and different experiments with elec-
tronic circuits was reported and can be found in
reviews [Pikovsky et al., 2001; Boccaletti et al.,

2002]. More recently, a new field of applications
related to synchronization in complex network
dynamics is growing [Boccaletti et al., 2006].

Hyperchaotic behavior appears in a nonlin-
ear dynamical system when more than one Lya-
punov exponent becomes positive [Rössler, 1979]
and normally arises as a natural regime in extended
space-time systems, delayed systems or in situa-
tions where many oscillators are coupled (a normal
situation in complex networks). In all these cases,
it is usually very difficult to understand what is
happening physically inside the system for differ-
ent reasons, like the presence of spatial symmetries
restricting the possible solutions, or delays trans-
forming the system into an infinite-dimensional one.

If the number of problems analyzed on synchro-
nization in low dimensional chaotic systems can
be considered very high, numerical works report-
ing the behavior of hyperchaotic systems number
much lower. This work focuses on the analysis of
synchronization in a mathematical model [Arm-
bruster, 1990] representing a bifurcation sequence
in a codimension-2 point (two modes bifurcating
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simultaneously) with square symmetry. This model
was used before to represent a convection experi-
ment in small square box as reported in [Ondarçuhu
et al., 1993; Mindlin et al., 1994; Ondarçuhu et al.,
1994].

The mathematical model describing the situa-
tion observed in the experiment contains four vari-
ables (x, y, z, w) and nine parameters. In this work,
we present the results of synchronization between
two hyperchaotic identical systems, guided by the
symmetries of the system. We have used the tempo-
ral signal outputs in order to choose the variables to
be synchronized and to couple them bidirectionally.

In a recent paper [Bragard et al., 2007] we
reported an analysis of several low dimensional sys-
tems on which windows of synchronization appear
suppressing the chaotic oscillations. In that paper,
windows of synchronization were detected by con-
sidering the Lyapunov exponent as a function of the
coupling strength. In this work we have used the
same method to detect the synchronized state win-
dow and the phase space representation to analyze
the dynamic state of the coupled system. The math-
ematical model of the coupled system is presented
in Sec. 2 and the synchronization process in Sec. 3.
Finally, the results and conclusions are presented in
Secs. 4 and 5.

2. Mathematical Model for the
Hyperchaotic Attractor

This work is based on a mathematical model for
codimension-2 point bifurcation with double zero
eigenvalues (Takens–Bogdanov bifurcation) under
square symmetry, which shows hyperchaotic behav-
ior. This model was first studied by Armbruster
[1990] and was used to model experiments cited in
[Ondarçuhu et al., 1994, 1993; Mindlin et al., 1994].
The equation set is:

x′ = y + γ2fz(zy − wx) (1)

y′ = µx + x(a(x2 + z2) + bz2)

+ γ(νy + y(c(x2 + z2) + ez2

+ dx(xy + zw))) + γ2fw(zy − wx) (2)

z′ = w − γ2fx(zy − wx) (3)

w′ = µz + z(a(x2 + z2) + bx2)

+ γ(νw + w(c(x2 + z2) + ex2

+ dz(xy + zw))) − γ2fy(zy − wx) (4)

where ν and µ are the unfolding parameters, γ is
a scaling parameter, and a, b, c, d, e, f are order one
parameters. We have shown in [Vidal & Mancini,
2007] that this dynamical system has a limitation
in numerical simulations for some values of γ, due
to the relation between this parameter and dissi-
pativity coefficient. If γ �= 0, when a long time
series calculation is performed the series explode
(when γ > 0) or become dissipative (when γ < 0).
Consequently, under this condition the connection
disappears between the numerical results and the
physical behavior. Then, the value of γ ≈ 0 must be
forced in order to impose that the system becomes
conservative and stable. This is not a strong con-
straint in the experiment because γ is related to
the time-dependent part of the total dissipativity
of the system (less than 10%) [Vidal & Mancini,
2007].

Accepting γ = 0 for long time series, the fol-
lowing simplified equation set is obtained:

x′ = y (5)

y′ = µx + x(a(x2 + z2) + bz2) (6)

z′ = w (7)

w′ = µz + z(a(x2 + z2) + bx2) (8)

where a, b and µ are parameters related to physical
characteristics of the fluid and geometrical proper-
ties of the container.

Choosing the values for these parameters prop-
erly the system shows very different dynamics.
Fixing a and b, it is possible to use µ as a control
parameter for selecting the dynamics.

We have checked the results comparing the
bifurcation sequence and the phase planes with the
results obtained in other works [Armbruster, 1990;
Ondarçuhu et al., 1994, 1993; Mindlin et al., 1994].
In order to perform the numerical simulations we
have used the fourth order Runge–Kutta method
with ∆t = 10−2.

As it was described in [Ondarçuhu et al., 1994]
the bifurcation process begins in a double zero point
related to the original patterns imposed by the
boundary conditions. By increasing µ the spatial
symmetry is broken and the system selects one of
the two possibilities that preserves diagonal sym-
metries. A further increase in µ leads the system
to become time-dependent displaying the chaotic
behavior plotted in Fig. 1. The heteroclinic con-
nection appears linking both sides of the phase
plane composed by two Duffing’s oscillators, as was
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Fig. 1. (a) The phase plane (x, y) for D4 attractor before the heteroclinic connection. The time series of (x, y) is shown in
(b). The (z, w) phase plane and time series are omitted because they are very similar to the first one.
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Fig. 2. Time series and (x, y) phase plane are shown in (a) and (b) respectively. Note that the heteroclinic connection provokes
phase shifts between x and y on the time series.

remarked in [Guckenheimer & Holmes, 1983]. The
temporal behavior in that condition can be seen in
Fig. 2.

Let us now explain something else about
the symmetry properties appearing in this model.
These properties comes from the “dihedric” group
D4, that represents the rotation and reflections for
a square geometry:

τ : (x, y, z, w) → (z,w, x, y)

ρ : (x, y, z, w) → (−x,−y, z, w)
(9)

The symmetries of the square box are reflected
in Eqs. (1)–(4). These symmetry transformations
present two very similar phase planes (x, y) and
(z,w).

3. Synchronization Process

In this section, we present the coupling and the
calculation technique used. Firstly, let us describe
the scenario for free oscillations before reporting
the coupling effects. Choosing suitable parameter
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values to set the system for the heteroclinic
connection, results in a hyperchaotic attractor with
the temporal outputs plotted in Fig. 2.

By using the symmetry properties, it is possible
to simplify the system until two free variables: on
the one hand there is a function which describes the
(x, z) plane, on the other hand there is the function
for (x, y) and the (z,w) phase planes. So, there are
two degrees of freedom represented by x and z vari-
ables which are related by a nonlinear coupling, the
other variables are just a function of these.

Assuming that we connect one of these vari-
ables, the coupled system has to reduce the com-
plexity, because it reproduces the same symmetry in
both systems. We also expect that the simplest cou-
pling effect will be similar to that shown in [Bragard
et al., 2007] i.e. a valley in the Lyapunov exponents
where complete synchronization [Pikovsky et al.,
2001] is achieved due to a complexity reduction.
We confirm this statement in the next section by
the numerical simulation results.

In this work a coupling between the variables
x of each attractor, and the parameter ε as a cou-
pling strength factor are used. This is a symmet-
ric coupling method instead of the unidirectional
coupling used in [Chen et al., 2004; Jia, 2007;
Zou, 2005; Wang & Liu, 2006]. By using this method
we are balancing both systems instead of forcing
one system to follow the other, as in master-slave
configuration.

The equation set for this coupling method is:

x′
1 = y1 +

ε

2
(x2 − x1)

y′1 = µx1 + x1(a(x2
1 + z2

1) + bz2
1)

z′1 = w1

w′
1 = µz1 + z1(a(x2

1 + z2
1) + bx2

1) (10)

x′
2 = y2 +

ε

2
(x1 − x2)

y′2 = µx2 + x2(a(x2
2 + z2

2) + bz2
2)

z′2 = w2

w′
2 = µz2 + z2(a(x2

2 + z2
2) + bx2

2)

For the purpose of this work, we have swept the
coupling parameter ε within the interval [0, 10].

To analyze the different synchronization states
we use the Lyapunov exponents graph, as was done
in [Bragard et al., 2007], instead of calculating the
transversal Lyapunov exponents as in [Maistrenko
et al., 1998; Galias, 1999].

Calculations are performed by integrating the
eight linearized systems from the two original ones.
For these systems, we have used the Runge–Kutta
method with the same ∆t, calculating the expo-
nents in 5 · 106 time steps. The Gramm–Schmidt
normalization process was done every 50 time steps,
and this operation requires the most computational
time. We begin to calculate the Lyapunov expo-
nents after 106 time steps. The number of time steps
to be discarded depends on the volume where our
initial conditions are randomly varied. We have ver-
ified that this transitory is sufficient for a good accu-
racy in calculations.

In order to keep the temporal evolution of the
system inside the attractor, it is necessary to limit
the random initial condition inside a sufficiently
small hypercube centered at the origin.

4. Results

Figure 3 shows the Lyapunov exponents against
the coupling factor ε changing in the interval
[0, 10]. There is a single run for the Lyapunov
exponents. Due to the existence of a bubbling
transition and a riddle basin [Venkataramani
et al., 1996] some spikes appear in the Lyapunov
plot.

In the figure, it can be seen that there is an
interval for ε values where the Lyapunov exponents

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Fourth Largest Lyapunov Exponents

Coupling Factor ε
x

Fig. 3. The four positive Lyapunov exponents for a coupling
factor ε between [0, 10]. The two largest Lyapunov exponents
are overlapped.
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Fig. 4. Complete synchronization is achieved between both systems. We show the synchronization plots for x, y, z, w variables
in (a)–(d) respectively for a coupling factor ε = 1.5.

decrease suddenly. This can be compared with
the results shown in [Bragard et al., 2007] where
two identical Rössler, Lorenz and Lotka–Volterra
attractors were coupled showing similar behavior in
the exponents graph. The valley appearing in those
plots corresponds to the values where complete syn-
chronization was achieved.

Figure 4 shows the complete synchronization
state by plotting system 2 against system 1 vari-
ables. As a strong contrast to the low dimensional
synchronization considered in [Bragard et al., 2007],
in our work, complete synchronization is achieved
but without chaos suppression inside the Lyapunov
exponents valley.

In Fig. 6 we show the phase plane (x, y) in (a)
and a Poincaré section in (b). Evidently the plot (a)
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seems a quasi-periodic attractor, but the Poincaré
section shows clearly that it is not [Strogratz, 1994].
In order to clarify even more that synchronization
is actually achieved for any realization with ran-
domly chosen initial conditions, we have calculated
the mean quadratic error of the synchronization as
follows:

MQE =

√
(x1 − x2)2 + · · · + (w1 − w2)2

4
(11)

Also, we have plotted the evolution of this measure
against time in Fig. 5.

Another interesting difference appears when
the phase planes are compared for different ε values
inside and outside the valley. For the last condi-
tion, the attractors become more complex as it can
be seen when comparing Figs. 6 and 7. Clearly the
system in Fig. 6 has a more regular dynamics.

It is important to remark that a stronger cou-
pling factor does not imply a better correlation in
the time series, in other words, more coupling does
not imply a better synchronization. This fact is evi-
dent in Fig. 8. It must be remarked that in the sec-
tion (a) complete synchronization between x1 and
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Fig. 6. Phase planes (x1, y1) in (a). Note that this attractor for a coupling factor ε = 1.5 is a simplified version of the original
one presented in Fig. 1. A Poincaré section with (x, y, z) variables is shown in (b) for ε = 1.5.
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Fig. 7. The (x1, y1) phase plane for ε = 10 value is shown in (a) plot. Also the time series are shown in (b) for the same
parameter value.
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Fig. 8. Variables from system 1 against the variables from system 2. The plot (a) looks like a quasi-synchronization, but the
zoom shows that there is no complete synchronization; in the other cases (b)–(d) it is clearly shown.

x2 is not achieved because x1 �= x2. The plot looks
like a straight line but it is not completely thin,
appearing like a “quasi-synchronized” state.

5. Conclusions

This study on hyperchaotic synchronization reports
an unnoticed behavior so far. As in previously
reported low dimensional case [Bragard et al., 2007],
a valley exists in the plot of Lyapunov exponents
against coupling factor where complete synchro-
nization is achieved and the complexity is reduced.

But this paper shows that chaos is not sup-
pressed in hyperchaotic attractors. We observe that
chaos suppression comes from complexity reduction

in the coupled system. This reduction of complex-
ity can also be observed in high dimensional systems
obtained by delays as seen in the results presented
in [Boccaletti et al., 2000].

A further additional increase in the coupling
coefficient bringing the coefficient out of the Lya-
punov exponents valley, leads to an additional
reduction of complexity that brings the system to
more complex situations.
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