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The characteristics of time-dependent swirling flows in a von Kármán configuration are
investigated numerically up to Reynolds number Re¼ 3000 (based on the angular velocity and
the radius of the cylinder), and experimentally within turbulent regimes. Experimental results
are analyzed together with the periodic and aperiodic flow obtained numerically. In the present
configuration, the fluid is contained in a cylindrical cavity with aspect ratio (height to radius)
!¼ 2 and the motion is driven by the exact counter rotation of the end walls while the sidewall
is at rest. Spectral direct numerical simulations show that for this geometry the axisymmetric
base flow becomes unstable to non-axisymmetric perturbations with azimuthal wavenumber
m¼ 1 through a subcritical bifurcation, and the corresponding flow exhibits a pattern with one
cat’s eye in the axial-azimuthal planes. Increasing the Reynolds number the flow becomes
unstable to non-axisymmetric steady perturbations with even azimuthal wavenumbers, and the
corresponding flows exhibits a two cat’s eyes pattern. The occurrence of cat’s eye pattern in
radial-azimuthal surfaces was observed in this and other aspect ratio cavities and is associated
with vortices in 3D steady flows with characteristic azimuthal modes [Nore, C., Tuckerman,
L.S., Daube, O. and Xin, S., The 1 : 2 mode interaction in exactly counter-rotating von Kármán
swirling flow, J. Fluid Mech., 2003, 477, 51–88; Lackey, T.C. and Sotiropoulos, F.,
Relationship between stirring rate and Reynolds number in the chaotically advected steady
flow in a container with exactly counter-rotating lids, Phys. Fluids, 2006, 18, 1–14]. Time-
dependent regimes are obtained numerically when the value of the Reynolds number is
Re" 1500. The time dependency is associated with a pulsation of the two vortices found in the
steady regime. Experimental visualizations and measurements show that in turbulent regimes
the flow also exhibits two vortices, but in this case they travel in the azimuthal direction with
a frequency compatible with the frequency obtained in the numerical simulations at much lower
Reynolds number. The azimuthal drift of these vortices is associated with the asymmetry of the
mean azimuthal flow with respect to the equatorial plane.
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1. Introduction

Flows in rotating disk systems are not only a subject of fundamental interest as
prototype flows for three-dimensional boundary layers but are also a topic of practical
importance in the performance improvement of many industrial devices.
In turbomachinery, typical flow configurations are the flows between rotating
compressor and turbine disks, which can be idealized as flows confined between two
coaxial rotating disks. In these two rotating disk flows, the flow supports similarity
solutions of von Kármán type. Many research works on these flows are motivated by
dynamo experiment feasibility solutions. The dynamo effect in a conducting fluid
consists of a self-sustained magnetic field that appears in some configurations (Moffat
1978). The whole problem involves the analysis of momentum, Navier–Stokes equation
and the induction equation for the magnetic field B. Because of the physical properties
of real materials, a flow that could lead to a dynamo effect has to be in a fully turbulent
regime. The experimental approach becomes critical, being one of the key points for the
understanding of the flow beneath the dynamo action.

The von Kármán geometry has been proposed as one of those potentially producing
a dynamo action. During the last years a great effort has been devoted to the study of
this flow (Bourgoin et al. 2002, Pétrélis et al. 2003, Marié et al. 2003, Ravelet et al. 2005)
with a successful experiment carried out in 2007 (Monchaux et al. 2007). These
experimental flows are performed using propellers instead of flat disks to improve the
efficiency (maxima of the velocity flow is compared to the rim velocity). The transition
from laminar to turbulent flow has been studied in depth for some propellers (Ravelet
et al. 2008).

Nevertheless, some of the results of these experiments (Berhanu et al. 2007) and
recent results from some of the authors (de la Torre and Burguete 2007, de la Torre
et al. 2007) indicate that the slow scales and the symmetry breaking are important in
this instability. It has been shown experimentally (Ravelet et al. 2004) that, for some
propellers, this flow can present a global bifurcation from two cells to only one cell that
fills the whole container and that is stable in time.

The mechanisms that generate the instabilities strongly depend on the aspect ratio,
which is here defined as !¼ height/radius¼L/R, and on the rotation ratio s¼"t/"b

(t and b refer to the top and bottom disks, respectively). The control parameter is the
Reynolds number, defined as Re¼"R2/!, where R, " and ! are the radius of the
cylindrical cavity, the rotation rate of one of the end walls and the kinematic viscosity.

In extended cavities, the differential rotation rate between solid boundaries and the
incompressible fluid in the core of the cavity create boundary layer-type flows and in the
transition process to the turbulence the instabilities arise within the boundary layers
(Serre et al. 2001). When the end walls are co-rotating or in slight counter rotation the
flow behaves differently to the case of a strong counter rotation rate, so that in the first
case the basic flow and the first instability are always axisymmetric and in the second case
the destabilization of the basic flow leads to three-dimensional more complex structures.
The important role of the rotation ratio, s, and the aspect ratio ! on the critical Re and on
the mechanisms of the transition has been discussed by Pécheux and Foucault (2006).

In cavities with moderate aspect ratio, !#O(1) and in the rotor stator configuration,
s¼ 0, many research work has focused on the study of the vortex breakdown
phenomena, which is observed at low Reynolds number (Serre et al. 2002). At higher
Reynolds number and s¼ 0 the flow is unstable to azimuthal travelling waves
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(Gelfgat et al. 1996, 2001). The case of cavities with !#O(1), with the end walls in exact
counter rotation, s¼$1, has been studied both experimentally and theoretically by
Gelfgat et al. (1996), Nore et al. (2003, 2004, 2005). The base flow is axisymmetric and
the instability of the steady flow sets up due to free shear layer instabilities through
a Kelvin Helmholtz instability. After the first transition the new state is steady and non-
axisymmetric, the pattern may have different symmetries and several vortices near the
equatorial plane, the number of them depends on !. The vortical structures of the three-
dimensional steady flow have been investigated by Lackey and Sotiropoulos (2006) with
a Lagrangian numerical method at !¼ 1.5. This investigation was focused on the
steady state, and the stirring rate versus Re$1/2 as proposed by Mezićs (Lackey and
Sotiropoulos 2006).

In this work, we study the flow in a cylindrical cavity with !¼ 2 when the two end
walls are in exact counter rotation, s¼$1, and the sidewall is at rest. The results of the
stability analysis in this configuration, and the investigation of states at low Reynolds
numbers, were provided by Nore et al. (2003). At critical Reynolds number Rec,1¼ 349
the axisymmetric flow becomes unstable to non-axisymmetric perturbations leading to
a steady mode called ‘‘Mixed mode’’ (Nore et al. 2003, 2004, 2005). In the range
412%Re% 452 unsteady states are predicted theoretically and observed experimentally,
consisting in a travelling wave and a modulated wave of the previous one. Increasing
again the rotation rate the stable solution is found to be the steady ‘‘Pure mode’’, for Re
up to 500 by Nore et al. (2003, 2004).

This article is focused on the investigation of the time-dependent behavior at high
Reynolds numbers. It starts with an outline of the numerical method in section 2.
In section 4, we first present the results of the numerical study, second the results of the
experimental study of the turbulent flow and finally the comparison between them.
Concluding remarks are given in section 5.

2. Mathematical and numerical models

The governing equations, are the continuity and the Navier–Stokes equations, made
dimensionless using [R,"$1,"R] as units of length, time and of the velocity
components. In cylindrical coordinates (r, ", z)2 [0, 1]& [0, 2#]& [0,!], the non-
dimensional velocity is u¼ (u, v,w). The boundary conditions are no-slip for all solid
walls, v¼'r at z¼ 0, and z¼! and u¼ 0 at the sidewall r¼ 1. The three-dimensional
Navier–Stokes equations are solved numerically using a pseudo-spectral numerical
method. The coupling between the pressure and the velocity field is treated with
a projection method, which uses improved version of the Goda scheme. The time
scheme is second-order accurate (Serre and Pulicani 2001). Most of the computations
have been performed using a grid with 65& 48& 65 collocation points in the radial,
azimuthal and axial directions, respectively.

3. Experimental setup

The experimental volume consists of a cylindrical vessel made of plexyglass, whose top
and bottom ends can rotate independently and are modified at will. The aspect ratio
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!¼L/R can be modified continuously, and for the present results it has been fixed to
!¼ 2. In the configuration used for this article, the propellers placed at both ends
have 10 curved blades (blades’ height, 2 cm) that rotate, pushing the fluid with the
convex side. The container and propeller radii are, respectively, Rcyl¼ 10 cm
and Rprop¼ 8.75 cm. The experimental Reynolds number is defined as
Re¼ 2#fpropRpropRcyl/!. This definition means that the experimental Re number is
slightly lower than the numerical value (about a 12.5%, 1$Rprop/Rcyl). The propellers
are identical (within a 10 mm precision) and there are no asymmetries in the
experimental setup. Details of this experimental setup are provided by de la Torre
and Burguete (2007).

The geometry of the propellers has been chosen because of two reasons. First, it
allows a high efficiency in terms of mean flow velocity compared to rim’s velocity. With
other geometries, i.e. flat disks, this efficiency can be as low as 1/20, whereas in this
configuration it is near 1. The second reason is that this experiment has been conceived
to study the potential application of this flow in a dynamo experiment. For this
application, the flow needs a balance between the different velocity components that is
achieved using these propellers (de la Torre et al. 2007).

The measurement technique is a classical LDV velocimetry. The propeller velocities
have been recorded using different techniques to assure their stability. The data series
are, in the best situations, obtained with a data rate of 100 kHz and, to record the slow
behavior, we have measured the flow for some hours. These resolutions are large
enough to not affect the characterization of the slow time-dependent regimes.
The details on the LDV acquisition system are provided by de la Torre and Burguete
(2007). The fluctuations are Gaussian and remain below 0.07% for the short-term times
(for records of some hundred turns), and below 0.01% for long-term acquisitions
(for 1 h or more, compared to the typical turn, 0.1 s). With this technique we can record
extremely long time series (#105 rotation periods) of the velocity field that allow a full
characterization of the slow dynamics of the vortices present in the experiments. Using
these data the mean flow hu, v,wi is obtained averaging the instanteneous flow for at
least 102 propeller turns.

4. Results

4.1. Numerical results

Numerical solutions have been obtained in the range 300%Re% 3000. Spectral
numerical simulations are particularly efficient in this range of low Reynolds numbers
because they provide well-controlled solutions and only require a moderate number of
spectral modes to ensure accurate approximations of the flow quantities. The regimes at
Re% 500 and intermediate aspect ratio cavities have been investigated by Nore et al.
(2003, 2004, 2005) and Lackey and Sotiropoulos (2006). In section 4.1.1 we present the
results of the present numerical simulations for Re% 1000, including comparisons with
previous results in the literature in the same range of parameters. In section 4.1.2, we
present the features of the numerical results which are useful to analyze the time-
dependent solutions at higher Re: Re¼ 1500 and 3000.
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4.1.1. Steady states. In the basic steady state the fluid rotates with the end walls and is
expelled radially by the centrifugal effect. To ensure mass conservation the fluid is
pumped along the axis of the cylinder toward the end walls and recirculates near the
cylinder wall involving two symmetric toric cells with respect to an azimuthal shear
layer at mid-height. Our computations for Re¼ 300 are in full agreement with the basic
flow obtained by Nore et al. (2003) and the velocity maxima agree with the values
provided in that reference.

According to the stability analysis results of Nore et al. (2003), the critical Reynolds
number for the onset of 3D flow instability for an aspect ratio !¼ 2 considered herein is
Rec,1¼ 349.

We performed numerical computations of the flow at Re4Rec,1 using different initial
conditions and the results show that in order to obtain 3D solutions it is necessary to
have a finite non-axisymmetric perturbation as initial condition, as was already pointed
out by Lackey and Sotiropoulos (2006) in the case of a cavity with !¼ 1. This transition
was found to be subcritical since the amplitude of the perturbations is small (typically
0.1%) the perturbations decay and when the amplitude is larger, typically 1%, the flow
evolves to a 3D flow.

Thus, for Re¼ 355 the axisymmetric solution is stable to infinitesimal perturbations.
When it is perturbed adequately, the flow becomes 3D and it has the Fourier azimuthal
components m¼ 0 and m¼ 1. The perturbations with other azimuthal components
m41 are smaller and decrease in time. The evolution in time of the perturbations with
m¼ 1, 2, 3 and 4 azimuthal modes is represented in figure 1(a). At Re¼ 440 the 3D flow
is different from the 3D solution obtained at Re¼ 355 and the evolution in time of the
Fourier amplitudes m¼ 1, 2, 3, 4 are shown in figure 1(a). In this case the asymmetric
solution has azimuthal components m¼ 0 and 2, and the evolution of the amplitudes
is represented in figure 1(b).

In figure 2, the perturbations of the axisymmetric velocity fields are represented at
Re¼ 390 (right) and 440 (left) in the meridian and equatorial planes. In these plots the
m¼ 1 and m¼ 2 components of the flow have been obtained by subtracting the m¼ 0
component from the steady numerical solutions.

The qualitative difference between the spatial patterns of both steady states, which
were already observed by Nore et al. (2003), is also shown in figure 3 where the iso-
azimuthal velocity is represented for Re¼ 390 and 440. These graphics are pictures in
perspective from the top of the cavity. There are two and four darker regions,
respectively. The two darker regions in (a) represent a maximum and a minimum of the
azimuthal velocity that correspond to an ‘‘one cat’s eye pattern’’ and the four darker
regions in the second graphics (b) represent two maxima and two minima,
corresponding to a ‘‘two cat’s eye pattern’’. In the present numerical computations
the Reynolds number was increased up to Re¼ 1000. The resulting flow is steady and it
does not present any qualitative difference with respect to the flow obtained at
Re¼ 440. Therefore the steady solution presents a ‘‘two cat’s eye pattern’’ similar to the
patterns at lower Re. The total computation time for Re¼ 1000 was t¼ 400.

4.1.2. Time-dependent flow. The characteristic time scales in this system, like in other
rotating fluids, are the rotation time, "$1 which is typically the time for the
development of the viscous boundary layer during spin up, the Ekman time, R/("!)1/2,
which represents the time required for the secondary flow to move a fluid particle along
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the characteristic length, R, and the viscous diffusion time R2/!, which represents the
damping time for the residual oscillations.

The dimensionless rotation period is 2#, the dimensionless Ekman time is $Ek¼Re1/2,
and the dimensionless viscous diffusion time is $!¼Re. In order to interpret the results
the frequencies of the time-dependent flow and the time of computations can be referred
to these values.

Two time-dependent flows have been investigated, at Re¼ 1500 and Re¼ 3000,
corresponding to an oscillatory and an aperiodic regimes. Time dependent flows have
been predicted in a very narrow gap of low Reynolds numbers, 412%Re% 452 by Nore
et al. (2005). As these time-dependent states were not the objective of the present work
we did not perform an exhaustive numerical search of theses states. Only some damped
oscillations were observed for Re¼ 420.

4.1.3. Flow at Re^1500. At Re¼ 1500 the time dependence of the numerical solution
is oscillatory. The frequency is 0.21 times the rotation frequency, which corresponds to

Figure 1. Temporal evolution of the azimuthal amplitudes of the m¼ 1, 2, 3 and 4 modes at Re¼ 355 (a)
and 440 (b). The amplitude of m¼ 0 is about 2& 10$2 in both cases.
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a value of the period T/(2#)¼ 4.8. The relative amplitude of the Fourier modes is
similar to the solution at Re¼ 500 and 1000. Only even modes are present in the flow:
the amplitudes of m¼ 2 and 4 modes are one order of magnitude smaller than the
amplitude of m¼ 0, and the amplitude of the m¼ 6 mode is two orders of magnitude
smaller. The amplitudes of odd modes are smaller still. In the velocity field there are two
vortices similar to those exhibited in figure 3(b) corresponding to the two cat’s eyes
pattern. These vortices remain at the same position and the oscillation in time
corresponds to periodic fluctuations in time of the vortices intensity. The origin of this
frequency is not the instability of the boundary layers near the disks, because it is not
observed in the graphics, and because as the frequency of the boundary layer instability
is about 7–12 times the rotation frequency it is very different from the frequency
obtained in these computations.

The frequency of the oscillations obtained here is compatible with the oscillation of
the axisymmetric m¼ 0 azimuthal mode. In order to illustrate this connection, we have
included in table 1 the critical parameters of the first unstable modes in a counter
rotating cavity, s¼$1, together with the results in a rotor–stator configuration, s¼ 0.
It is well established that, when the end walls are in exact counter rotation, the first
instability is to a non-axisymmetric steady state. The values of the linear thresholds of
axisymmetric modes and other non-axisymmetric modes provided in the literature have
been presented in table 1. When the end walls are in rotor–stator configuration the first
instability is to an oscillatory axisymmetric state. Although the critical parameters are
valid only near the critical conditions, in principle, further transitions are based on the

Figure 2. Iso lines of the azimuthal velocity perturbations of the flow at Re¼ 390 and 440 in the meridian
planes "¼ 0, # and in the equatorial plane z¼!/2. The amplitude of the axisymmetric m¼ 0 mode has been
subtracted from the numerical flow in both figures.
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bifurcation diagrams and in this context we compare the frequencies of axisymmetric
mode m¼ 0 obtained numerically !¼ 0.21 with the predictions of linear stability
analysis, 0.3, (table 1). But the origin of these two behaviors might not be the same.

4.1.4. Flow at Re^3000. When the rotation rate is increased up to Re¼ 3000 the time
signal is aperiodic. The instantaneous pictures of the flow (figure 4) exhibit a two cat’s
eyes pattern and the azimuthal Fourier amplitudes reveal that the even azimuthal
modes predominate, similarly to the features of the solution for Re¼ 1500. Looking at
the time evolution of the flow pattern, it is observed that the time-dependent behavior

Figure 3. View from above of azimuthal velocity iso surfaces showing a maximum and a minimum (i.e. one
cat’s eye pattern) at r¼ 0.5 for Re¼ 390 (a) and two maxima and two minima (two cat’s eyes) at r¼ 0.75 for
Re¼ 440 (b).
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of the variables is chaotic and that the vortices do no travel. Differently from the
pattern obtained at Re¼ 1500, where the vortices do not move, in this case the center of
each vortex moves around a steady position, remaining close to it and without a fixed
trajectory.

The velocity field (v,w) in the plane (", z) at r¼ 0.9 is represented at several time steps
with #t( 30 in figure 4. The graphics represent the evolution of the flow over a long
time, t¼ 300. In the chaotic signal we have observed that the amplitude of the m¼ 4 is
greater than that of m¼ 2 in some short periods of time. Correspondingly, in most
instantaneous graphics there are two visible vortices and in some time steps the velocity
plots display four vortices, showing the relevance of the m¼ 4 mode in the spatial
azimuthal spectrum. The contribution of even modes continues to be small: the
amplitudes of the odd modes are at least two orders of magnitude smaller than those of
the even modes. Some indicative amplitudes are: 2& 10$2 the magnitude of m¼ 0 and
O(10$3) the magnitude of m¼ 2, 4 and m¼ 6. As we pointed before the relative
magnitude of m¼ 2 and m¼ 4 varies, being greater or smaller in different instants.

The three-dimensional pattern flow is complex. Figure 5 represents the instantaneous
velocity field projected on meridian planes: "¼ 0, #/12, #/6 in the first row from left to
right, and "¼#/4, #/3 and 5#/12 in the second row and from left to right. Due to the
symmetry exhibited by the solution, the patterns in the other half cylinder [#/2,#] are
alike. In all the graphics the recirculation of the flow can be observed: near the axis of
rotation the flow goes toward the end walls, near the end walls there are boundary layers
and the flow travels to the sidewall, then it goes to the equatorial plane along the sidewall,
and recirculates from the sidewall toward the axis near to the equatorial plane z( 0.

4.2. Experimental results

For Re5104 the mean flow is almost symmetric with respect to the equatorial plane
and consequently the azimuthal velocity is nearly null in this plane. As the rotation rate

Table 1. Thresholds and critical frequencies for azimuthal modes m¼ 0–3 for
a rotor-stator flow s¼ 0 and counter rotating flow, s¼$1.

(s,!) m Re ! T
2#

($1, 2)a 0 1852 0.3 3.3
1 349 0 0
2 401 0 0
3 625 0 0

($1, 1.5)b 0 1644 0.284 3.52
1 332 0 0

(0, 2)c 0 2.58& 103 0.243 4.12
1 3.3& 103 0.07 14.3
2 3.0& 103 $0.015 69.2
3 3.92& 103 $0.105 9.54

(0, 1.5)d 0 2.7& 103 0.24 4.22
1 3.2& 103 ’0.5 2
2 2.5& 103 ’0 0
3 3.1& 103 ’0.11 9.09

Note: aNore et al. (2003, 2004), bGelfgat et al. (1996), cGelfgat et al. (2001), dGelfgat et al. (2001) and
Nore et al. (2004).
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is increased it is observed a dissymmetry, which becomes more notorious, until an
asymptotic state is reached for Re¼ 105. The asymmetric flow has two vortices at
opposite azimuth angles, with a characteristic size Dvortex( 5 cm which appear
simultaneously to the asymmetry of the mean flow. The stream vectors and contour
plots of v are represented in the figure 6. The contour plot of azimuthal velocity v and
the velocity field (u,w) projected on the meridian plane "¼ 0, is represented when
Re¼ 3& 105. There are two toroidal cells, each of them near one the propellers. Near
the upper and lower ends the flow is aspired through the axis toward the propellers, as it
was observed in the numerical results. The vortices move with a precessing movement
with a positive or negative velocity in the equatorial plane (azimuthal velocity). This
displacement defines two different states labelled N or S depending on whether the
vortices follow the up or bottom propeller.

The asymmetric states can be characterized using different variables. One is the
position of the frontier z0, defined as the z position where the azimuthal velocity is
zero, v¼ 0. When the N (resp. S ) state dominates, z0 is below (resp. above) the
equator. In figure 6, the N state dominates, being z0#$0.15. Another possibility is
measuring veq, the mean azimuthal velocity at an equatorial point near the wall
(r( 0.9 with the LDV system) that reflects the vortices velocity. This mean velocity

Figure 4. Instantaneous iso-plots of the (v,w) components of the velocity field at Re¼ 3000 in a (", z) plane
at r¼ 0.9.
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Figure 5. Instantaneous velocity field projected on the first quadrant meridian planes "¼ 0, #/12, #/6, and in
the next line on the second quadrant planes "¼ 0, #/4,0, #/3, 5#/12 at Re¼3000.

Figure 6. Turbulent flow at Re¼ 105 averaged in ": at left it is represented a contour plot of the azimuthal
velocity (toroidal velocity) and at right the (u,w) velocity field in the same plane "¼ 0.
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appears because of the displacement of the shear layer (around '!=20) from the
equator, breaking the symmetry with respect to the equatorial plane (figure 7), and
remains stable in time (for intermediate acquisition times, i.e. around one thousand
propeller periods) and proportional to the propellers rim velocity (figure 8).
Nevertheless these states are not completely stable, because rare spontaneous jumps
(inversions) between N and S states can appear for very long acquisition times.
These inversions were observed in a range of 1045Re5105. The analysis of the
experimental data shows that the time of residence, i.e. the time that the system
stays in one of the states, follows a law %(t)¼ 1/T0 exp($t/T0), where the
characteristic time is T0¼ 1484s¼ 7020& 2#/"¼ 0.2$!, being $! the diffusion time
scale (de la Torre et al. 2007).

Experimental results have been performed with rotation rates slightly different from
s¼"up/"low¼$1. When the propellers are not exactly counter rotating, no inversions
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Figure 7. Scheme in a (", z) plane of the cat’ eyes behavior when the flow is symmetric (a) and not symmetric
(b) with respect to the equatorial plane, z¼!/2.
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have been observed when jsþ 1j40.001. A very narrow hysteresis window has been
found for jsþ 1j50.001.

4.3. Comparison between experimental and numerical results

In the experimental visualizations the cat’s eyes pattern precesses, travelling in the
azimuthal direction. The velocity of the vortices is represented as a function of the
velocity of the propeller in figure 8. The time frequency is 0.24 times the frequency of
the propellers, corresponding to a period T/(2#)¼ 4.2. In the numerical computation
the frequency is 0.21 times the rotation frequency of the end walls. The cat’s eyes
pattern oscillates about a standing position. These values of the frequency fall into the
range of values found for the oscillation of the m¼ 0 mode, as it is seen in table 1.

These different behaviors may be explained by observing the averaged flow. When
the mean flow averaged in the azimuthal direction hui",t is symmetric with respect to the
equatorial plane, the vortices are placed near the equator, the averaged azimuthal flow
is zero in that plane and the vortices do not precess as it is represented in the scheme of
figure 7(a). Similarly an averaged asymmetric flow precesses as it is represented in the
same scheme in 7(b): when the flow is asymmetric there is a net drift velocity in the
direction of the azimuthal velocity at the equator. In figure 7(b) it is represented a drift
flow to the left. The averaged turbulent flow at Re¼ 3& 105 presented in figure 6
exhibits the asymmetry with respect to the z¼!/2 plane, corresponding to a flow with
the same characteristics that in figure 7(b).

The experimental pattern in figure 6(b) may be compared with the averaged velocity
field of the numerical solution at Re¼ 3000, in figure 9. In the numerical solution the
nuclei of the tori are close to the sidewall and in the experimental flow, due to the effect
of the propellers and to the different (higher) Reynolds number, the circulation zones
appear for more intermediate radii.

At Re¼ 3000 the numerical flow in figure 5 is not symmetric with respect to the
equatorial plane, z¼!/2, in every " plane but the velocity field averaged in time and in
" is symmetric. When the instantaneous flow is averaged over all the "-planes, i.e. hui",
hvi", hwi" the flow is almost symmetric, as it is shown in figure 9. In the equatorial plane,
the azimuthal velocity is nearly zero and the situation corresponds to figure 7(a).

Figure 9. Numerical flow at Re¼ 3000. Azimuthal velocity instantaneous (left) averaged in " (center) and
averaged in " and in time (right) hvi",t, in planes "¼ 0 and "¼ (0,#).
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However, because of the differences in the configuration in both analyzed systems,
a whole agreement can not be expected.

5. Concluding remarks

The characteristics of the time-dependent swirling flows have been investigated in
a !¼ 2 cylindrical cavity with counter rotating end walls. Spectral direct numerical
simulations have been performed up to Re¼ 3000 and turbulent regimes have been
investigated experimentally for Reynolds numbers from 103 to 106. The numerical base
flow is steady and axisymmetric. Increasing the rotation rate of the end walls the flow
bifurcates first to a steady 3D state with m¼ 0 and 1 azimuthal modes (see the flow at
Re¼ 355) and then to a steady state with m¼ 0, 2 and 4 azimuthal modes (see the flow
at Re¼ 400).

Time-dependent states have been investigated at Re¼ 1500 and Re¼ 3000
corresponding to an oscillatory and a chaotic state, respectively. In both flows only
the first even modes remain significant, as it was observed in the steady regimes at lower
Reynolds numbers. The oscillatory behavior at Re¼ 1500 corresponds to an oscillatory
variation in the intensity of the two cat’s eyes. The value of the frequency, equal to 0.21
times the frequency of the rotating end walls, is compatible with the values obtained in
the linear stability predictions for the instability of the m¼ 0 mode, i.e. the instability of
the axisymmetric steady state to an axisymmetric oscillatory flow. At Re¼ 3000 the
aperiodic flow is characterized by the motion of every cat’s eye centering around
a steady position, remaining close to it and without a fixed trajectory.

Experiments performed in turbulent regimes have shown that these vortical patterns
remain qualitatively alike over a large range of Reynolds numbers. Nevertheless, in the
fully turbulent flow the vortices travel with a drift azimuthal velocity and a frequency
equal to 0.24 times the frequency of the propellers. These values remain compatible with
the frequency obtained in the numerical simulations at much lower Reynolds numbers.
The azimuthal drift of these vortices is associated to the symmetry breaking in the mean
azimuthal flow with respect to the equatorial plane which was not numerically observed
in the laminar regime.
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