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Abstract. The cooling dynamics of a 2D granular gas of elongated particles
is analyzed. We perform simulations on the temporal evolution of soft particles,
using a molecular dynamics algorithm. For weakly dissipative particles, we found
a homogeneous cooling process where the overall translational kinetic energy
decreases analogously to viscoelastic circular particles. In contrast, for strongly
dissipative particles we observed an inhomogeneous cooling process where the
diminishing of translational kinetic energy notably slows down. The rotational
kinetic energy, however, always decays in agreement with Haff’s prediction for
the homogeneous cooling state of inelastic particles. We mainly found that the
cooling kinetics of the system is controlled by the mechanisms that determine
the local energy dissipation (collisions). However, we detected a strong influence
of particle shape and inelasticity on the structure of the clusters which develop
in the inhomogeneous cooling regimes. Our numerical outcomes suggest that
strong dissipation and particle anisotropy induce the formation of ordered cluster
structures that retards the relaxation to the final asymptotic regime.
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1. Introduction

Granular materials are multi-particle systems involved in many industrial process and
everyday life. To describe the mechanical behavior of granular materials such as sand,
coffee beans, planetary rings and powders are current, challenging tasks. In the last
few years, these systems have been widely examined experimentally, analytically and
numerically [1, 2], and they continue to produce relevant and unexpected results [1, 2].

In particular, granular gases are dilute systems of macroscopic particles, which
usually move randomly, losing energy, due to their inelastic collisions. Starting from an
equilibrium homogeneous state and in the absence of any external driving, these systems
evolve into a homogeneous cooling state (HCS). In such a state, the kinetic energy, E(t),
decreases homogeneously and the time evolution of all variables occurs only through its
global temperature [3]–[5]. Haff showed that the total energy of an inelastic gas of spherical
grains, characterized by a constant restitution coefficient, evolves in time as a power law,
E(t) = 1/(1 + t/τ)2, where τ is a characteristic time [6]. Very recently, Haff’s law has
been experimentally corroborated in systems of magnetized latex particles [7].

For any given inelasticity and above a certain system size, HCS becomes unstable and
the system subsequently evolves into an inhomogeneous state where the cooling process
slows down and decays as E(t) = 1/(1 + t/τh), independently of inelasticity [8, 9]. In
this regime the collective motions of particles and vorticity determine the cooling of the
gas, and large inhomogeneities in density are observed [8, 10, 11]. Hence, large clusters of
particles develop, grow and interact due to the energy lost in collisions [8, 10, 11]. While for
an infinite system this regime has been argued to correspond to the asymptotic free cooling
evolution of a fluid of inelastic hard spheres, for any finite system clusters eventually
become of the order of the system size; in this regime the kinetic energy decays as that
in the HCS [7, 8, 12, 13]. These dynamical regimes, predicted theoretically, have also been
validated numerically for hard discs and spheres with constant restitution coefficient [1, 2];
in particular, Haff’s law in the HCS [8], the algebraic decay in the hydrodynamic regime [9]
and the regime where cluster sizes become of the order of the system size [8] have been
validated.

There is experimental evidence that in some materials the restitution coefficient is
not constant and that it rather depends on the relative velocity of the colliding grains.
Moreover, there have been a number of theoretical studies which have analyzed in more
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detail the particle–particle interaction during the collision and how inelasticity emerges
from such interactions [14]–[16]. For soft grains in which the repulsion force depends
linearly on deformation, a constant restitution coefficient can be recovered [17, 18]. A
more realistic account of particle deformation implements a Hertzian contact [17, 19],
where the nonlinear elastic repulsive force leads to an algebraic decay of the kinetic
energy during HCS which deviates from Haff’s law, E(t)/E0 = 1/(1 + t/t0)

5/3 [15, 20].
The implications of variable restitution coefficients in the instability of HCS and the
subsequent inhomogeneous cooling regime have been addressed for viscoelastic spheres,
where homogeneous cooling becomes the asymptotic state after a long transient controlled
by inhomogeneous large clusters [21].

In the past, it was also shown that particle roughness leads to correlations
between translational and rotational degrees of freedom and their corresponding kinetic
energies [12], [22]–[24]. In general, both translational and rotational kinetic energies
decay following Haff’s law but differ from each other due to the breakdown of energy
equipartition leading to correlations between translational and rotational kinetic energies;
such correlations have been quantified for agitated spherical rough spheres [25, 26].
However, less is known about the freely cooling evolution of anisotropic particles [27, 28],
although recently there has been increasing interest in the dynamics of rod-shaped
grains [29]–[33]. For example, in vibrated systems the particle anisotropy leads to net
displacements and propulsion [34]. Such types of collective features favor clusters and
other types of patterns, reminiscent of those observed in a system of self-propelled
elongated particles in model systems [35] motivated from biological materials [36, 37].

In the present work, we investigate the free cooling process of a granular gas of
elongated viscoelastic particles. In the next sections, we analyze the role of inelasticity
and particle shape in the overall kinetic processes. Moreover, the structures and patterns
which develop as the system cools down are studied in detail. This paper is organized as
follows: first, the specific model is described in section 2. Subsequently, in section 3 we
discuss the kinetics of freely evolving grains and clarify the main features that grain shape
has in the clusters that the grains develop. We conclude in section 4 with a summary of
the main results and their implications.

2. The model

We consider a system of 2D irregular convex polygons, which are generated by a
random Voronoi tessellation. The latter allows us to generate particles with variable
degrees of irregularity systematically [38]. Accordingly, the particle shape distribution is
characterized by a single parameter 0 < a < 1. The extreme value a = 0 corresponds to
a regular distribution of rectangles with sides S1 = 1 and S2 = d, where d > 1 defines the
grain aspect ratio.

Following our description, a system composed of N particles, of mass mi and moment
of inertia Mi, move according to Newton’s equations of motion:

mi�̈ri =
N∑

j=1

�Fij, (1)

Miθ̈i =

N∑

j=1

Lij , (2)

doi:10.1088/1742-5468/2010/06/P06020 3

http://dx.doi.org/10.1088/1742-5468/2010/06/P06020


J.S
tat.M

ech.
(2010)

P
06020

Cooling dynamics of a granular gas of elongated particles

Figure 1. In (a) a sketch of two interacting particles is presented. The force
between two particles is proportional to the overlap area. The force is applied at
the middle point of the line connecting the intersection points of the particles.
In (b) we show the total kinetic energy loss due to the collision of two particles,
expressed as the ratio of the total energy after and before the collision (ET/ET0).
The total energy is computed as the sum of kinetic and rotational energies.
The values shown here correspond to the maximum velocity experienced by the
particles.

in terms of the particle position �ri and orientation θi. �Fij corresponds to the force exerted

by particle j on particle i and Lij the torque related to the force �Fij, which points in
the direction perpendicular to the plane in which the particles displace. The total force
and the total torque acting on particle i are given as sums of the pair-wise interaction
of particle i with its contacting neighbors. Accordingly, the grains’ trajectories will be
determined once we identify the nature of the collisional forces.

When two particles come in contact they deform inelastically. Rather than describing
the actual grain deformations, we keep the shape of the particles and allow them to overlap
and determine the particle forces in terms of the overlapping area [38]–[42]. Accordingly,
the total force between the two grains can be decomposed:

�Fij = FN
ij · �n + FT

ij · �t (3)

into components normal, FN
ij , and tangential, FT

ij , to the interface defined by the contact
points of the two particles when they overlap. We introduce the normal, �n, and tangential,
�t, vectors to the common interface, which is depicted in figure 1(a). The force is applied at
the middle point of the common interface. Although the center of mass of the overlapping
area could have been chosen as the relevant position [42], no qualitative changes have been
appreciated in tests performed as far as the results described subsequently are concerned.

The normal component contains an elastic contribution, proportional to the pair
overlap area, Aij, and a dissipative contribution:

FN
ij = −knAij − meff

ij · γN · vN
ij,rel, (4)
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where kn is the Young modulus, γN is the damping coefficient in the normal direction,
meff

ij = (mi · mj/mi + mj) is the relative mass of the colliding pair and �vN
ij,rel = (�vj −�vi) · n̂

stands for the normal component of their relative velocity. In general, for regular particles
it is possible to derive analytic expressions for the overlap area as a function of the
separation between the particle’s center of mass. For particles of irregular shape, however,
it is computed numerically [38]–[42].

The tangential component of the interaction force is characterized also by an elastic
and a dissipative contribution, and obeys the Coulomb constraint, FT

ij � μ|FN
ij |, where μ

stands for the static friction coefficient. Accordingly, we write

FT
ij = −min(−ktξij − meff

ij · γT · |vT
ij,rel|, μ|FN

ij |), (5)

where γT is the damping coefficient in the tangential direction and �vT
ij,rel = (�vj − �vi) · t̂

corresponds to the tangential component of their relative velocity. The elastic force is
now characterized by ξij, the elastic elongation associated with the overlapping pair. It
behaves as a Cundall spring [43]:

dξij(t)

dt
= vT

ij,rel, (6)

which evolves as long as there is an overlap between the two particles.
The equations of motion, equations (1) and (2), are integrated using a fifth-order

predictor–corrector algorithm with a numerical error proportional to (Δt)6 [44], while
the kinematic tangential relative displacement, equation (6), is updated using Euler’s
algorithm. In the simulations, we have used the parameters kt/kn = 0.1, γN/γT = 3,
kn = 4 × 102 N m and μ = 0.25, introduced in previous works [41, 42]. For this range
of parameters we have set a time step dt = 10−6 s. The damping coefficients γN and γT

quantify the inelasticity of the collision. In order to address their impact on the evolution
of anisotropic grains, we have varied them. To understand their relationship with the
energy lost in a collision, we have analyzed the interaction between a pair of rectangles.
In figure 1(b) we display the behavior of the total kinetic energy, ET, during one collision.
For convenience, the values are rescaled to the total kinetic energy just before the collision
starts, ET0 . The data correspond to several damping coefficients γN, which quantifies the
variation and the relevant range of dissipation. The numerical values of the corresponding
effective restitution coefficients are also shown. In general, the total energy lost strongly
depends on the initial particles’ relative velocity. Consequently, to identify the effective
velocity-dependent restitution coefficient is not very obvious. The values of the damping
coefficient displayed range from particles which loose a rather small amount of kinetic
energy up to particles where around 70% of the pair’s incoming relative kinetic energy
is lost in one collision. The data shown correspond to particles with a relative impact
velocity of 1 m s−1, which is the highest value experienced by the particles in the present
numerical studies.

In the next sections, we focus on rectangles with variable aspect ratio, d. For the
rectangles, when two vertices overlap with the same side, no special care is necessary as
long as the parameters used always warrant that the maximum overlap is much smaller
than the particle size. In the very unlikely situation where two vertices of one particle
overlap with a pair of vertices of a second particle, leading to full face-to-face interaction,
the contact surface is defined by the two middle points between the corresponding closest
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Figure 2. When a particle starts to leaves the system, a virtual particle is created
on the opposite side (red particles). For the particular case that the particle
leaves the box from a corner then a virtual particle is created at all the other
corners (blue particles).

pair of vertices. The other steps of the procedure remain unchanged. Systems of irregular
particles characterized by a parameter (1/4 ≤ a ≤ 1/2) (data not shown) were also
explored, without observing any relevant differences from the results we will analyze
below.

Boundary conditions

The simulations are carried out in a square box of size L and a fixed number of grains,
N , at a prescribed area fraction, ν. In order to minimize finite size effects, we have used
periodic boundary conditions. Due to the general shape of the grains, whenever a particle
leaves one side of the box, we need to replicate it on the opposite side. Accordingly,
we generate a list of virtual particles which include all particles that have at least one
vertex out of the system. As soon as a particle starts leaving the system, it is added to
the list of virtual particles. When the center of mass of the particle crosses one of the
system’s boundaries, then the position of the reference particle is updated following the
standard procedure. Such a change alters the status of the reference particle and the
virtual ones, which is updated appropriately in the virtual particle list. For consistency
in the case the particle goes out through a corner, three virtual particles are created,
as illustrated in figure 2. The virtual particles are regarded as standard particles when
computing inter-particle forces. Note that the force computed for a virtual particle is
applied to the corresponding real particle the virtual particle is linked to. Also the change
in position of the real particle leads to the corresponding change of the virtual particles
linked to it.

doi:10.1088/1742-5468/2010/06/P06020 6
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3. Freely evolving anisotropic grains

We have numerically studied the free cooling kinetics of a dilute system of N = 3000
polygons at area fraction ν = 0.07 confined within a square box. Initially, the particles
are homogeneously distributed and their translational and rotational velocities follow
Gaussian distributions. In order to avoid memory effects from the initial conditions,
we allow the system to execute a few collisions before starting to analyze the particles’
temporal evolution, which we follow until the total mean translational and rotational
kinetic energies have decayed several orders of magnitude. All data shown correspond to
averages over at least five different initial configurations.

In figures 3 and 4 we display snapshots of the density and velocity fields for rectangular
grains with aspect ratio d = 5. We have explored the system’s behavior for two extreme
damping coefficients (used in figure 1(b)) to quantify the inelasticity of typical collisions.
In both cases we can distinguish an initial homogeneous decay, which corresponds to
HCS. This state is unstable and the granular gas develops density inhomogeneities leading
to cluster formation. Since eventually the decay in the grains’ velocity will reduce the
inelasticity lost in the collisions, we expect a homogeneous asymptotic behavior analogous
to the one put forward for viscoelastic isotropic grains [15, 21].

The behavior of the granular gas in the inhomogeneous regime shows a clear
dependence on the damping coefficient, γN. For weakly dissipative particles, γN = 1 s−1

(see figure 3), one can appreciate the smooth development of a velocity field leading to
the formation of clusters which coalesce and merge into large structures (see figure 3(b)).
At longer times, however, these large clusters show a tendency to break, avoiding
the development of the clustering instability (see figure 3(c)), in agreement with the
predictions for viscoelastic grains [21, 45]. In contrast, highly dissipative grains, with
γN = 103 s−1, develop marked clusters of smaller sizes much faster, as can be appreciated
in figure 4. Such clusters are correlated with the rapid development of complex vortex
structures in the grains’ velocity field. These well-defined small clusters tend to coalesce
at larger times, although the overall process of large cluster development is severely slowed
down when compared to the evolution of weakly dissipative clusters. Increasing the
particle anisotropy (data not shown) enhances this distinct evolution with the particle
energy dissipation. In the past, a similar trend has been observed for rough spheres,
where it has been shown that energy transferred into rotational degrees of freedom delays
cluster development [26].

We have quantified the temporal evolution of freely evolving gases of rectangular
grains by monitoring the mean translational and rotational kinetic energy of the system,
usually referred to as granular temperatures. Figure 5 displays the decay of the
translational kinetic energy, E(t), of a granular gas for weak and strong dissipative
rectangular grains with aspect ratio d = 5. After a short transient, t > 0.1 s the decay is
algebraic, in agreement with the analytic predictions for the homogeneous cooling state
of hard and viscoelastic grains.

Since the dissipation in these systems is proportional to the relative velocity difference
and the restitution force is a nonlinear function of the overlapping area (see equation (4)),
one can expect the system evolves analogously to a gas of hard viscoelastic grains [15].
We have verified that this is consistent with the results obtained for weakly dissipative
grains. The algebraic decay depicted in figure 5(a) is characterized by the same exponent,
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Figure 3. Spatial evolution of a system with elongated particles d = 5 and a
damping coefficient of γN = 1 s−1. The first column shows the screenshots of the
system, while the second illustrates the velocity fields. The lighter the particles
the faster they are. Pictures at t = 10 s (a), t = 100 s (b) and t = 200 s (c) are
presented.

β = −5
3
, analytically predicted for viscoelastic grains [15]. However, this is not the case

for highly dissipative grains, which cool down slower, with a characteristically smaller
exponent, β ≈ −1.2, in the algebraically decaying regime. It is important to remark that
the limitations of the numerical scheme used prevented us from performing calculations
with higher dissipative systems, to reach the hydrodynamic algebraic decay E(t) ∼ t−1

limit [9].
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Figure 4. Spatial evolution of a system with elongated particles d = 5 and a
damping coefficient of γN = 103 s−1. The first column shows the screenshots
of the system, while the second illustrates the velocity fields. The lighter the
particles the faster they are. Pictures at t = 10s (a), t = 100 s (b) and t = 200 s
(c) are presented.

On the other hand, for weakly dissipative systems, the decay of the translation kinetic
energy also slows down at longer times. This can be attributed to the development of
stronger velocity correlations. Nevertheless, the narrow time regime (system size effects)
does not allow us to quantify the algebraic dependence characteristic of the hydrodynamic
regime, E(t) ∼ t−1 [9]. In contrast, the faster decay (t−5/3), which can be attributed to
the dominance of large clusters, is quickly recovered. Larger system sizes will be required
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Figure 5. Evolution of the translational kinetic energy of the system in time.
Particles with several aspect ratios from d = 1 to 5 are studied. Results for two
very extreme damping values are shown, (a) γN = 1 s−1 and (b) γN = 103 s−1.
For comparison the analytical prediction for a system of viscoelastic circles as
well as our best fit for the inhomogeneous cooling process are shown as lines.

to identify the relevance of the intermediate regimes before reaching the asymptotic state.
For highly dissipative grains the smaller exponent, observed from very short times, may
suggest an earlier departure from HCS. In this case, the interplay of cluster formation and
break up with the development of large clusters and their impact on the overall kinetic
energy decay also remains to be clarified. Nevertheless, figures 5(a) and (b) clearly indicate
that neither the dissipation nor the shape significantly modify the functional dependence
and the characteristic timescales in which the systems cool down. Moreover, analogous
results (data not shown) are obtained for irregular particles with (1/4 ≤ a ≤ 1/2).

Figure 6 shows the decay of the rotational kinetic energy. After a short transient,
for t > 1 s, we observe an algebraic decay characterized by an exponent −2 regardless
of particle shape and inelasticity. This exponent, in agreement with Haff’s law, can be
understood assuming weak rotational–translational correlations. The latter can be traced
back to the fact that, above the Coulomb threshold, both the elastic and dissipative
contributions of the tangential force are linear functions of the lateral displacement and
relative velocity, respectively (see equation (5)). The deviations observed in E(t) at longer
times are much weaker for rotational kinetic energy, suggesting that rotations are much
less sensitive to the development of spatial inhomogeneities. The different behavior in the
decay of rotational and translational kinetic energy indicates a lack of energy equipartition
during the whole cooling process of the anisotropic grains, both in the homogeneous and
inhomogeneous regimes.

During the cooling process the velocity statistics was also examined (see figures 7(a)
and (b)). Starting from a Maxwellian speed distribution, the particle velocity distribution
evolves with a scale characterized by the mean translational kinetic energy. For weakly
dissipative particles, which cool down more uniformly over a wide range of times, it is
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Figure 6. Evolution of the rotational energy of the system in time. Particles
with several aspect ratios from d = 1 up to 5 are studied. Results for two very
extreme damping values are shown: (a) γN = 1 s−1 and (b) γN = 103 s−1. For
comparison Haff’s analytical prediction t−2 is also shown.

reasonable to expect that all the temporal dependence enters through the translational
temperature and we can then identify a dynamic scaling regime where the scaled velocity
distribution becomes stationary. Such a picture is consistent with the results shown in
figure 7(a), where we show the scaled speed distribution, P (c) (c = v/v̄), at the initial
and final times. Regardless of the particle anisotropy, the distribution shape remains close
to a Maxwellian. For highly dissipative grains, larger fluctuations are observed, although
the shape also remains close to a Maxwellian. In this case, one can argue that such a
behavior arises as a result of the presence of independently evolving clusters. Finite size
limitations prevents us from analyzing the tails of the distributions, where deviations from
the Maxwellian behavior may develop and become good indicators of the different features
of weak and strong dissipative granular gases.

To gain insight into the role of particle anisotropy on the collective features of freely
evolving granular gases, we have analyzed the structure of the clusters which the system
spontaneously develops. In the simulations, two particles are regarded as part of the same
cluster if there is any contact between them, i.e. when the inter-particle overlap area is
larger than 10−6. We have first considered the radial distribution function of connected
particles G(r) within a given cluster:

G(r) =

〈
N(r + δr)

2πrδrρ

〉
, (7)

where ρ = NT/A is the average number of rods per unit of area measured by counting
the total number of rods NT whose center of mass lies in the analyzed area A. N(r + δr)
accounts for the number of particles, within the cluster, with their center of masses at a
distance r within a differential of area δS = 2πrδr. The value of G(r) corresponds to a
mean value obtained over the whole system.
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Figure 7. Scaled speed distribution of several particle shapes, ranging from d = 1
to 5. In all cases, the data correspond to very late times; for comparison, the
initial speed distribution is also shown. (a) Weak dissipative particles, γ = 1 and
(b) strong dissipative particles, γ = 103. The insets show the tails of the velocity
distribution functions.

In figure 8, the radial distribution function of connected particles, G(r), is illustrated
for particles with different damping coefficients and a variety of aspect ratios. At short
distances, weakly dissipative grains display weak, short range correlations characterized by
the particle’s longest side, clearly visible in figure 8(a). One can appreciate a correlation
hole close to contact and subsequently the radial distribution function develops a smooth
peak whose relative height decreases as the particle anisotropy increases. For strongly
dissipative particles the short range structure is markedly different, as shown in figure 8(b).
The inelasticity induces strong short range structures which correspond to the different
structures in which the particles can pack locally, depending on their aspect ratio. The
drawings in the figure indicate some of the structures where one can find particles either
perfectly aligned parallel to each other along their long faces, or perpendicular to each
other, alternating long and short faces. This packing gives rise to clearly marked peaks,
whose positions change with the aspect ratio, d. The relative height of the peaks also
decrease with particle anisotropy, but in all cases their heights are larger than the
corresponding particle anisotropies with a smaller damping coefficient. This tendency
to more marked close-packed structures arises as a combined effect of dissipation and
alignment-induced packing associated with the particle’s shape. The insets of figure 8
display the long distance decay of the radial distribution function. The particle dissipation
gives rise to larger values of the radial distribution function at contact, but in both cases,
and for all the aspect ratios analyzed, we observe a long range decay, characteristic of the
development of long range clusters and structures. Such long range structures have been
observed in agitated isotropic grains as a result of long range hydrodynamic correlations
due to the lack of detailed balance in these out-of-equilibrium systems [46].

Further information on the local structure of rod alignment is obtained from the radial
orientational distribution of connected particles within a given cluster, Q(r), which can
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Figure 8. Radial distribution function of connected particles obtained for a
system of particles with aspect ratios from d = 2 to 5. Results for two very
extreme damping values are shown: (a) γN = 1 s−1 and (b) γN = 103 s−1. In
both cases the particle alignment corresponding to a few relevant peaks in the
radial distribution function is drawn.

be defined as

Q(r) = 〈Qij〉 Qij = cos (2(θi − θj))δ(rij − r) (8)

where θi and θj are the angular orientation of particles i and its connected neighbor j, at
a distance rij . This distribution function provides quantitative information on the local
structure of the clusters because configurations where the two particles are perpendicular
to each other contribute −1, while particles aligned along their long faces or along their
short faces contribute 1.

In figure 9(a), the Q(r) numerical data clearly indicate that weakly dissipative systems
do not show significant structure. There is a peak at contact (r = 1), because at this
shortest distance only perfectly aligned particles along their long faces can contribute. At
larger distances a small dip indicates a small preference at these intermediate distances
to observed perpendicularly aligned particles. But, overall, it is the relaxation from the
completely aligned structure at contact which dominates Q(r). In contrast, figure 9(b)
shows that, after the decay of the compact structure at contact, a series of maxima (parallel
alignment) and minima (perpendicular alignment) develop at intermediate distances
corresponding to the high tendency of these dissipative particles to align in close-packed
structures. The radial orientation distribution function shows a faster decay than the
radial distribution function, suggesting that angular correlations are short range.

Finally, in figure 10 we show the local nematic order parameter for the freely evolving
gas, S(t), defined as

S(t) =
1

N

N∑

i

1

Nc

Nc∑

j

Qij (9)
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Figure 9. Radial orientation distribution functions of connected particles, Q(r),
as defined in equation (8) for a system of particles with aspect ratios from d = 2
to 5. Results for two very extreme damping values are shown: (a) γN = 1 s−1

and (b) γN = 103 s−1. In both cases the particle alignment corresponding to a
few relevant peaks in the radial orientation distribution function is drawn.

We restrict the sum of the orientational function, introduced in equation (8), to the
particles which are in contact with a reference particle i. Nc is the number of particles
that are in contact with i. S(t) naturally captures the local angular correlation, and it runs
from S(t) = 1, representing the maximum local correlation, to S(t) = 0, which corresponds
to a locally disordered system. Figure 10 clearly indicates that particle anisotropy induces
local nematicity in the clusters of particles, even at very early stages for highly dissipative
particles. The local ordering into a nematic structure grows with particle anisotropy. For
weakly dissipative particles, however, no local angular correlation is found, as shown in the
inset of figure 10. For these particles the clusters gather particles which avoid overlapping
each other but without any significant local angular correlation.

4. Discussion

In summary, we have examined the cooling dynamics of a 2D granular gas of elongated
grains. For weakly dissipative particles, we have found that the mean kinetic energy
decreases asymptotically as E(t)/E0 = 1/(1 + t/to)

5/3, in agreement with the Brilliantov
and Pöschel predictions for the homogeneous cooling state regimen (HCS) of viscoelastic
particles [15, 20]. A higher dissipation induces an inhomogeneous cooling process and the
energy vanishes as E(t)/E0 ∼ t−1.2. The rotational energy, however, always decays as
R(t)/R0 ∼ t−2, which is in agreement with Haff’s prediction for the HCS of inelastic
particles. The lack of energy equipartition is kept even during the inhomogeneous cooling
process where strong inhomogeneities in the velocity field are present.

We have also observed a strong influence of particle shape and inelasticity on the
structure of the clusters which develop in the inhomogeneous cooling regimes. The
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Figure 10. Nematic parameter at contact, S(t). Results for γ = 103 s−1 and three
different anisotropies are depicted. The inset shows the corresponding behavior
for weakly dissipative particles, γ = 1 s−1.

combined analysis of the radial distribution function, G(r), the angular correlation,
Q(r), and the local nematic order parameter, S(t), clarify the cluster structure. Highly
dissipative grains show a marked tendency to form ordered clusters with strong local
angular correlations. Therefore, the system is nematogenic in this cooling process, and
one can expect that the observed clusters display a significant nematic order. The latter,
which increases with particle elongation, is very closely related to the typical face-to-face
interaction. The relevance of the interplay between particle shape and inelasticity has
been clearly appreciated by analyzing the structures of weakly dissipative grains, where
the local nematicity is essentially absent and the density inhomogeneities are statistically
much more isotropic. Our numerical outcomes suggest that the strong dissipation and
the particle anisotropy induce the formation of ordered cluster structures and velocity
vortices, which notably slow down the cooling process and retard the appearance of large
clusters which break and reform. Increasing the particle anisotropy enhances this distinct
evolution as a function of the particle energy dissipation. This behavior can be attributed
to the detailed interaction between ordered clusters of particles, where rotational degrees
of freedom play a relevant role. The break up of large clusters of elongated particles as
a result of their collisions leads to the formation of smaller clusters, promoting a faster
decay of the rotational kinetic energy. Such smaller clusters of ordered particles in turn
delay the development of the inhomogeneous cooling regime. Understanding the impact
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of these strong correlations in agitated systems where energy is supplied continuously
constitutes an interesting venue in the fundamental understanding of the physics of
anisotropic granulates and the subtle interplays between particle shape and inelasticity.
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