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Chapter 1
A Statistical Measure of Complexity

Abstract In this chapter, a statistical measure of complexity isadtrced and some
of its properties are discussed. Also, some straightfodvegaplications are shown.



6 1 A Statistical Measure of Complexity

1.1 Shannon Information

Entropy plays a crucial theoretical role in physics of macapic equilibrium sys-
tems. The probability distribution of accessible states @onstrained system in
equilibrium can be found by the inference principle of maximentropy[[1]. The
macroscopic magnitudes and the laws that relate them caalbgated with this
probability distribution by standard statistical mectartiechniques.

The same scheme could be thought for extended systems farefgailibrium,
but in this case we do have neither a method to find the prabadbistribution nor
the knowledge of the relevant magnitudes bringing the mftion that can predict
the system’s behavior. It is not the case, for instance, thighmetric properties of
low dimensional chaotic systems by means of the Lyapunowmsmpts, invariant
measures and fractal dimensions [2].

Shannon information or entropy [3] can still be used as a magnitude in a gen-
eral situation with\ accessible states:

N
H=-KY pilogpi (1.2)
i; i i

with K a positive real constant angl the normalized associated probabilities,
zi’\‘:l pi = 1. An isolated system in equilibrium presents equiprobigbib = 1/N
for all i, among its accessible states and this is the situation oimadentropy,

If the system is out of equilibrium, the entropy can be expanded around this
maximumHmax

N 2
H(p1,p2,---,PN) :KIogN—N—ZKiZl(pi —%) +...:Hmax—¥D+...
(1.3)
where the quantityp = ¥;(pi — 1/N)?, that we calldisequilibrium is a kind of
distance from the actual system configuration to the eqiilib. If the expression
(@3) is multiplied byH we obtain:

HZZH'HmaX—¥H'D+K2f(Napi)v (1.4)

wheref (N, pi) is the entropy multiplied by the rest of the Taylor expangiEnms,
which present the forn,% Yi(Np —1)™with m> 2. If we renamé&C = H - D,

with cte > = NK/2 andf = 2f /N. The idea of distance for the disequilibrium is
now clearer if we see thd is just the real distancB ~ (Hmnax— H) for systems
in the vicinity of the equiprobability. In an ideal gas we B&V ~ HpaxandD ~ 0,
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thenC ~ 0. Contrarily, in a crystaH ~ 0 andD ~ 1, but alsoC ~ 0. These two
systems are considered as classical examples of simplelsrardbare extremain a
scale of disorderH{) or disequilibrium D) but those should present null complexity
in a hypothetic measure abmplexity This last asymptotic behavior is verified by
the variableC (Fig.[I.1) andC has been proposed as a such magnitlide [4]. We
formalize this simple idea recalling the recent definitidrLMC complexityin the
next section.

Let us see another important property [5] arising from feta{1.5). If we
take the time derivative o€ in a neighborhood of equilibrium by approaching
C ~ H(Hmax—H), then we have

dC dH

The irreversibility property oH implies that‘:,—'jI > 0, the equality occurring only
for the equipartition, therefore

dC -

dt —
Hence, in the vicinity oHmax, LMC complexity is always decreasing on the evo-
lution path towards equilibrium, independently of the kinfdtransition and of the
system under study. This does not forbid that complexityicarease when the sys-
tem is very far from equilibrium. In fact this is the case inengral situation as it
can be seen, for instance, in the gas system presented if6Ref.

0. (1.7)

1.2 A Statistical Complexity Measure

On the most basic grounds, an object, a procedure, or systeaid to be “com-
plex” when it does not match patterns regarded as simples Jaunds rather like
an oxymoron but common knowledge tells us what is simple amdpdex: simpli-
fied systems or idealizations are always a starting poirtlieesscientific problems.
The notion of “complexity” in physics[7.18] starts by consithg the perfect crystal
and the isolated ideal gas as examples of simple models anefthe as systems
with zero “complexity”. Let us briefly recall their main claateristics with “order”,
“information” and “equilibrium”.

A perfect crystal is completely ordered and the atoms ar@nged following
stringent rules of symmetry. The probability distributimn the states accessible to
the perfect crystal is centered around a prevailing stapedéct symmetry. A small
piece of “information” is enough to describe the perfecstay: the distances and the
symmetries that define the elementary cell. The “informrtgtored in this system
can be considered minimal. On the other hand, the isolat= ghs is completely
disordered. The system can be found in any of its accesdiesswith the same
probability. All of them contribute in equal measure to theférmation” stored in
the ideal gas. It has therefore a maximum “information”. §évo simple systems
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are extrema in the scale of “order” and “information”. Itlfak/s that the definition
of “complexity” must not be made in terms of just “order” onformation”.

It might seem reasonable to propose a measure of “complexjtyadopting
some kind of distance from the equiprobable distributiothefaccessible states of
the system[4]. Defined in this way, “disequilibrium” woulivg an idea of the prob-
abilistic hierarchy of the system. “Disequilibrium” woulge different from zero if
there are privileged, or more probable, states among tlozessible. But this would
not work. Going back to the two examples we began with, it &lily seen that a
perfect crystal is far from an equidistribution among theessible states because
one of them is totally prevailing, and so “disequilibriumbuld be maximum. For
the ideal gas, “disequilibrium” would be zero by constrantiTherefore such a dis-
tance or “disequilibrium” (a measure of a probabilisticraiehy) cannot be directly
associated with “complexity”.

In Figure[I.1 we sketch an intuitive qualitative behaviarfoformation” H and
“disequilibrium” D for systems ranging from the perfect crystal to the ideal §as
indicated in the former section, this graph suggests tfaptioduct of these two
quantities could be used as a measure of “complex@y= H - D. The functionC
has indeed the features and asymptotic properties that oulelwxpect intuitively:
it vanishes for the perfect crystal and for the isolated lides, and it is different
from zero for the rest of the systems of particles. We willdal these guidelines to
establish a quantitative measure of “complexity”.

Before attempting any further progress, however, we musiiréhat “complex-
ity” cannot be measured univocally, because it dependsenature of the descrip-
tion (which always involves a reductionist process) andhanstcale of observation.
Let us take an example to illustrate this point. A computép can look very differ-
ent at different scales. It is an entangled array of eleatrelements at microscopic
scale but only an ordered set of pins attached to a black baxretcroscopic scale.

We shall now discuss a measure of “complexity” based on #tesstal descrip-
tion of systems. Let us assume that the systeniNaccessible statgsy, xo, ..., Xn }
when observed at a given scale. We will call thi;ssystem. Our understanding of
the behavior of this system determines the corresponduotzgfilities{ p1, pz, ..., pn}
(with the conditionzi'\‘:1 pi = 1) of each statep > O for alli). Then the knowledge
of the underlying physical laws at this scale is incorpatateo a probability dis-
tribution for the accessible states. It is possible to finduargity measuring the
amount of “information”. As presented in the former sectionder to the most
elementary conditions of consistency, Shanridn [3] detegthithe unique func-
tion H(py, P2, ..., Pn) given by expression (1.1), that accounts for the “inforiorti
stored in a system, whet¢ is a positive constant. The quantity is calledinfor-
mation The redefinition of informatiotd as some type of monotone function of
the Shannon entropy can be also useful in many contextseloabe of a crystal, a
statex. would be the most probabf® ~ 1, and all others; would be very improb-
able,p; ~ 0i # c. ThenH¢ ~ 0. On the other side, equiprobability characterizes an
isolated ideal gagy ~ 1/N soHg ~ KlogN, i.e., the maximum of information for
a N-system. (Notice that if one assumes equiprobabilityénd k = Boltzmann
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INFORMATION =H

C =H*D = COMPLEXITY

DISEQUILIBRIUM =D

CRYSTAL IDEAL GAS

Fig. 1.1 Sketch of the intuitive notion of the magnitudes of “infortiea” (H) and “disequilibrium”
(D) for the physical systems and the behavior intuitivetyuieed for the magnitude “complexity”.
The quantityC = H - D is proposed to measure such a magnitude.

constant H is identified with the thermodinamic entro= k logN). Any other
N-system will have an amount of information between thosedwtrema.

Let us propose a definition afisequilibrium Din a N-system|[[9]. The intuitive
notion suggests that some kind of distance from an equiptelbstribution should
be adopted. Two requirements are imposed on the magnituledf- 0 in order to
have a positive measure of “complexity” abd= 0 on the limit of equiprobability.
The straightforward solution is to add the quadratic distésnof each state to the
equiprobability as follows:

D:ii(pi—%)z. (1.8)

According to this definition, a crystal has maximum diseiguiim (for the dom-
inant statep; ~ 1, andD; — 1 for N — o) while the disequilibrium for an ideal
gas vanisheslly ~ 0) by construction. For any other systdnwill have a value
between these two extrema.
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We now introduce the definition afomplexity Cof a N-system [[4["10]. This is
simply the interplay between the information stored in thetem and its disequi-

o C=HD=- (Kiipi Iogpi> | (ii<pi_%)2> | -

This definition fits the intuitive arguments. For a crystasedjuilibrium is large but
the information stored is vanishingly small, o~ 0. On the other hand is large
for an ideal gas, bub is small, soC ~ 0 as well. Any other system will have an
intermediate behavior and theref@e> 0.

As was intuitively suggested, the definition of complexiiyd) also depends on
thescale At each scale of observation a new set of accessible stapesies with its
corresponding probability distribution so that complgxihanges. Physical laws at
each level of observation allow us to infer the probabilistdbution of the new set
of accessible states, and therefore different valueklfd andC will be obtained.
The straightforward passage to the case of a continuum nuofiséatesx, can be
easily inferred. Thus we must treat with probability distiions with a continuum
support,p(x), and normalization conditiofi’;’ p(x)dx= 1. Disequilibrium has the

limit D = [ p?(x)dx and the complexity could be defined by:

C=H.-D=- <K /::o p(x)log p(x)dx> - (/:m pz(x)dx) . (1.10)

Other possibilities for the continuous extensiorCadre also possible. For instance,
a successful attempt of extending the LMC complexity fortsarous systems has
been performed in Ref. [11]. When the number of states alaifar a system is a
continuum then the natural representation is a continutistaition. In this case,
the entropy can become negative. The positivityCafor every distribution is re-
covered by taking the exponential ldf[12]. If we defineC=H -D=¢€"-Das an
extension ofC to the continuous case interesting properties charattgrilze indi-
catorC appear. Namely, its invariance under translations, resg#&lansformations
and replication conveg in a good candidate to be considered as an indicator bring-
ing essential information about the statistical propertita continuous system.
Direct simulations of the definition give the values®for generalN-systems.
The set of all the possible distributiofips, p, ..., pn } Where arN-system could be
found is sampled. For the sake of simplicklyis normalized to the intervd0, 1].
ThusH = N, pilogpi/logN. For each distributioff p;} the normalized informa-
tion H({pi}), and the disequilibriund({p;}) (eq.[L8) are calculated. In each case
the normalized complexit¢ = H - D is obtained and the pafiH,C) stored. These
two magnitudes are plotted on a diagrém C(H)) in order to verify the qualitative
behavior predicted in Figuie 1.1. Fbir= 2 an analytical expression for the curve
C(H) is obtained. If the probability of one stateps = x, that of the second one is
simply p2 = 1 — x. Complexity vanishes for the two simplest 2-systems: tlystat
(H=0; pp =1, po =0) and the ideal gaH{=1; p1 = 1/2, pp = 1/2). Let us
notice that this curve is the simplest one that fulfills a# tonditions discussed in
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Fig. 1.2 In general, dependence of complexi@) on normalized informationH) is not univocal:
many distributiong p; } can present the same valuetbbut differentC. This is shown in the case
N=3.

the introduction. The largest complexity is reachedkbr 1/2 and its value is:
C(x~ 0.11) ~ 0.151. ForN > 2 the relationship betwedr andC is not univocal
anymore. Many different distributionsp; } store the same informatidt but have
different complexityC. Figure[ 1.2 displays such a behavior fér= 3. If we take
the maximum complexitfmaxH) associated with eacH a curve similar to the
one for a 2-system is recovered. Every 3-system will havenapbexity below this
line and upper the line &min(H) and also upper the minimum envelope complex-
ity Cminenv. These lines will be analytically found in a next section Rigure[1.3
curveSCmax(H) for the cased\ = 3,...,10 are also shown. Let us observe the shift
of the complexity-curve peak to smaller values of entropyrfsing N. This fact
agrees with the intuition telling us that the biggest comipye(hnumber of possi-
bilities of ‘complexification’) be reached for lesser engi®s for the systems with
bigger number of states.

Let us return to the point at which we started this discussfmy notion of
complexity in physics[7,18] should only be made on the bate well defined or
operational magnitudé&|[4, 110]. But two additional requiegnts are needed in order
to obtain a good definition of complexity in physics: (1) thewnmagnitude must be
measurable in many different physical systems and (2) a ecatige relationship
and a physical interpretation between any two measurerskatgd be possible.
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Fig. 1.3 Complexity C = H - D) as a function of the normalized informatiad ) for a system with
two accessible statebl & 2). Also curves of maximum complexitZ{ax) are shown for the cases:
N=3,...,10.

Many different definitions of complexity have been proposedlate, mainly
in the realm of physical and computational sciences. Ambegd, several can be
cited: algorithmic complexity (Kolmogorov-Chaitin) [134], the Lempel-Ziv com-
plexity [15], the logical depth of Benneft [16], the effagtimeasure complexity of
Grassbergef[17], the complexity of a system based in itsrdity [18], the thermo-
dynamical depth [19], the-machine complexity [20] , the physical complexity of
genomes[21], complexities of formal grammars, etc. Thenit&fin of complexity
(@9) proposed in this section offers a new point of viewdnasn a statistical de-
scription of systems at a givestale In this scheme, the knowledge of the physical
laws governing the dynamic evolution in that scale is usdithtbits accessible states
and its probability distribution. This process would imrizdly indicate the value
of complexity. In essence this is nothing but an interplageen the information
stored by the system and tbistance from equipartitiofmeasure of a probabilistic
hierarchy between the observed parts) of the probabilgtridution of its accessi-
ble states. Besides giving the main features of a “intuitiaion of complexity, we
will show in this chapter that we can go one step further amd ithis possible to
compute this quantity in relevant physical situatidi$ #/23]. The most important
pointis that the new definition successfully enables usgoath situations regarded
as complex.
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1.3 LMC Complexity: Extremal Distributions

Now we proceed to calculate the distributions which maxarand minimize the
LMC complexity and its asymptotic behaviaf [6].

Let us assume that the system can be in one &f pp@ssible accessible states,
The probability of the system being in stateill be given by the discrete distribu-
tion function, f; > 0, with the normalization conditioh= 3N ; fi = 1. The system
is defined such that, if isolated, it will reach equilibriumith all the states having
equal probabilityfe = % Since we are supposing thatis normalized, < H <1,
and 0< D < (N —1)/N, then complexityC, is also normalized, & C < 1.

When an isolated system evolves with time, the complexityiodhave any pos-
sible value in & versusH map as it can be seen in Fig.11.2, but it must stay within
certain boundSCmnax andCpin. These are the maximum and minimum value€of
for a givenH. SinceC = D-H, finding the extrema df for constant is equivalent
to finding the extrema db.

There are two restrictions db: the normalizationl, and the fixed value of the
entropy,H. To find these extrema undetermined Lagrange multipliersiaed. Dif-
ferentiating expressions &f, | andH, we obtain

D
a7~ 2hi—fo). (1.11)
il
3t~ 1, (1.12)
oH

DefiningA; andA; as the Lagrange multipliers, we get:
2(fj—fe)+ A1+ A2(Infj+1)/InN=0. (1.14)

Two new parametergy and 3, which are a linear combinations of the Lagrange
multipliers are defined:
fi+alnfj+B=0, (1.15)

where the solutions of this equatiof), are the values that minimize or maximize
the disequilibrium.

In the maximum complexity case there are two solutidnsto Eq. [1.I5) which
are shown in Table.1. One of these solutidiigy, is given by

1

1-f
H= —m fmaxln fmax+ (1— fmax)ln ( N _n;-ax):| ) (1-16)

and the other solution b§l — fmax) /(N — 1). The maximum disequilibriunDmax,
for a fixedH is
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Dimax = (fmax— fo)2 + (N — 1) (1,“‘7_““"1&*— fe)z, (1.17)
and thus, the maximum complexity, which depends onlyois
Cmax(H) = Dmax-H. (1.18)

The behavior of the maximum value of complexity versubl lwas computed in

Ref. [24].

Table 1.1 Probability valuesfj, that give a maximum of disequilibriundnay, for a givenH.

Number of statgs f; |Range off;
with f;
1 fnax | § oo 1
N-1 | 0. §

Table 1.2 Probability valuesf;, that give a minimum of disequilibriunmin, for a givenH.

Number of statgs f; Range off;
with f;
n 0 0
1 fmin 0... ﬁ
N-n-1 [p=mell . iy

n

ncan have the values D, ... N —

Equivalently, the valued,, that give a minimum complexity are shown in Table
[I.2. One of the solutiongin, is given by

1 1— fmi
H=-r0 {fminln fmin + (1 — fmin) IN (N_in”l"‘lﬂ : (1.19)
wheren is the number of states with; = 0 and takes a value in the range=
0,1, ... ,N—2. The resulting minimum disequilibriur®,, for a givenH is,
2 1- fmin 2 2

Note that in this casé; = 0 is an additional hidden solution that stems from the
positive restriction in thé; values. To obtain these solutions explicitly we can define
x; such thatf; = x°. Thesex; values do not have the restriction of positivity imposed
to f; and can take a positive or negative value. If we repeat theadoag multiplier
method with these new variables a new solution arisgs: 0, or equivalentlyfj =
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0. The resulting minimum complexity, which again only deggonH, is
Cmin(H) = Dmin-H. (1-21)

As an example, the maximum and minimum of complexatysx andCn;n, are plot-
ted as a function of the entropi, in Fig.[T.4 forN = 4. Also, in this figure, it is
shown the minimum envelope complexi€minenv = Dminenv: H, WhereDmineny iS

defined below. In Fig_115 the maximum and minimum diseqtiilim, Dmax and
Dmin, versusH are also shown.

N=4
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Fig. 1.4 Maximum, minimum, and minimum envelope complex@ax, Cmin, aNdCnineny respec-
tively, as a function of the entropl], for a system witiN = 4 accessible states.

As shown in Figl”Tb the minimum disequilibrium function iegewise defined,
having several points where its derivative is discontiraidach of these function
pieces corresponds to a different valuenofTable[1.2).In some circumstances it
might be helpful to work with the “envelope” of the minimunsdguilibrium func-
tion. The functionDnminenw that traverses all the discontinuous derivative points in
the Dmin versusH plot is

Drminenv=€"H"N — % ) (1.22)

and is also shown in Figuge1.5.
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Fig. 1.5 Maximum, minimum, and minimum envelope disequilibriuBy,ax, Dmin, @nd Dminenv
respectively, as a function of the entropi, for a system witiN = 4 accessible states.

WhenN tends toward infinity the probabilityinax, Of the dominant state has a
linear dependence with the entropy,

||m fmaX: 1_ H 5 (123)
N—oc0

and thus the maximum disequilibrium scales asylitg Dmax= (1— H)2. The max-
imum complexity tends to

Jim Crnax=H - (1~ H)2. (1.24)

The limit of the minimum disequilibrium and complexity vahies, liny_c Dminenv=
0, and thus
lim Cpin = 0. (1.25)
N—o0

In general, in the limitN — o, the complexity is not a trivial function of the entropy,
in the sense that for a givet there exists a range of complexities between 0 and
Cmax given by Eqs.[(1.25) anfl(1.24), respectively.

In particular, in this asymptotic limit, the maximum &f,ax is found when
H = 1/3, or equivalentlyfmax = 2/3, which gives a maximum of the maximum
complexity ofCrnax = 4/27. This value was numerically calculated in REf.I[24].
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1.4 Renyi Entropies and LMC Complexity

Generalized entropies were introduced by Rényii [25] inftina of

1 A
lq= g log (; p; ) , (1.26)

whereq is an index running over all the integer values. By diffeiatig |4 with
respect ta a negative quantity is obtained independentlg,ahenlg monotonously
decreases whamnincreases.

The Rényi entropies are an extension of the Shannon infasmil . In fact,H
is obtained in the limig — 1:

N
H=I;= élgnllq = —i; pilogpi, (1.27)

where the constat of Eq. (1.1) is considered to be the unity. The disequiliboriu
D is also related witt, = —log (3, p?). We have that

D= s 2 1 e DY 1
_i;pi—ﬁ_e - (1.28)
then the LMC complexity is
C_H~D_I1~<e'2—%>. (1.29)

The behavior o€ in the neighborhood dfiyax takes the form
Cn~ %(IogzN—lllz), (1.30)

The obvious generalization of the Rényi entropies for amadized continuous dis-
tribution p(x) is

lg= ﬁ Iog/[p(x)]qu (1.31)

Hence,
H=1= —/p(X)Iogp(X)dx, (1.32)
D¢~ [[p09Pdx (1:33)

The dependence & = e . D with 1; andl, yields

logC = (11— 1y). (1.34)
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This indicates that a family of different indicators coukerde from the differences
established among Rényi entropies with differgsindices [5]. Let us remark at
this point the coincidence of the indicator 6gvith the quantitySsr introduced by
Varga and Pipek as a meaningful parameter to charactegzehtipe of a distribu-
tion. They apply this formalism to the Husimi representatice., to the projection
of wave functions onto the coherent state basis [26]. A &rteneralization of the
LMC complexity measure as function of the Rényi entropiesIibeen introduced in
Ref. [27].

The invariance o€ under rescaling transformations implies that this mageitu
is conserved in many different processes. For instancenitied Gaussian-like dis-
tribution will continue to be Gaussian in a classical diftwsprocess. The€ is

constant in time%—f =0, and we have:

diy dl

dt  dt’
The equal losing rate df andl,, i.e., the synchronization of both quantities, is the
cost to be paid in order to maintain the shape of the disidhuassociated to the

system and, hence, all its statistical properties will remaachanged during its time
evolution.

(1.35)

1.5 Some Applications

If by complexity it is to be understood that property presardll systems attached
under the epigraph of ‘complex systems’, this property &hbe reasonably quan-
tified by the measures proposed in the different branches@fledge. In our case,
the main advantage of LMC complexity is its generality arelférct that it is opera-
tionally simple and do not require a big amount of calculai@8]. This advantage
has been worked out in different examples, such as the stiuthe dime evolution
of C for a simplified model of an isolated gas, the “tetrahedral’ @] or also in
the case of a more realistic gas of particles [29, 30], tfghslinodification ofC as
an effective method by which the complexity in hydrologisgstems can be iden-
tified [31], the attempt of generalizz2in a family of simple complexity measures
[32,[33,34], some statistical features of the behavidZ é6r DNA sequences [35]
or earthquake magnitude time series| [36], some wavelaebiagormational tools
used to analyze the brain electrical activity in epilecpicsedes in the plane of co-
ordinategH,C) [37], a method to discern complexity in two-dimensionakeats
[38] or some calculations done on quantum systems[[39, 4042,143]. As an
example, we show in the next subsections some straightfdreadculation of the
LMC complexity [44].
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1.5.1 Canonical ensemble

Each physical situation is closely related to a specificrithistion of microscopic
states. Thus, an isolated system presents equipartitiprhyypothesis: the mi-
crostates compatible with a macroscopic situation arepeghable[[45]. The system
is said to be in equilibrium. For a system surrounded by a ressrvoir the proba-
bility of the microstates associated to the thermal equiilii follow the Boltzmann
distribution. Let us try to analyze the behavioih an ideal gas in thermal equilib-
rium. In this case the probabilify of each accesible state is given by the Boltzmann
distribution:
—BE;i
=" (1.36)

3N HA3N
Qu = / pe(p NPhdgN PV, (1.37)

whereQy is the partition function of the canonical ensemifie= 1/kT with
the Boltzmann constant and the temperaturey the volume, N the number of
particles E(p,q) the hamiltonian of the systerhjs the Planck constant aiqV, T)
the Helmholtz potential.

Calculation ofH andD gives us:

H(V,T) = (1+T%)(K|ogQN)ZS(v,T), (1.38)
D(V,T) = B AVT-AV.T/2)] (1.39)

Note that Shannon informatiod coincides with the thermodynamic entrofy
whenK is identified withk. If a system verifies the relatidd = C, T (U the in-
ternal energyCy, the specific heat) the complexity takes the form:

C(V,T) ~cteV)-S(V,T)e SV-TI/K (1.40)

that matches the intuitive function proposed in Fidure 1.1.

1.5.2 Gaussian and exponential distributions

Gaussian distribution: Suppose a continuum of states represented by vheable
whose probability densitp(x) is given by the normal distribution of variance

1 (_X_Z) (1.41)
=57 p 557 ) .

After calculatingH andD, the expression fd€ is the following:
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H-D = log(ov2m 1.42
Co— s (3-+l08(0VER ). (1.42)

If we impose the additional conditiad > 0, theng > gmin = (2re) /2. The
highest complexity is reached for a determined width= \/(e/2m).
Exponencial distribution: Consider an exponencial distribution of variance

leX/v x>0
p— y ’
p(X) { o (1.43)

The same calculation gives us:
Ce= (1+ logy), (1.44)

with the conditionH > 0 imposingy > ymin = € 1. The highest complexity corre-
sponds in this case o= 1.

Remark that for the same width than a Gaussian distributios §), the expo-
nential distribution presents a higher complex{@/(Cq ~ 1.4).

1.5.3 Complexity in a two-level laser model

One step further, combining the results obtained in the éoisactions, is now done.
We calculate LMC complexity for an unrealistic and simptifimodel of laser [46].

Let us suppose a laser of two levels of enefgy= 0 andE, = &, with N; atoms
in the first level and\, atoms in the second level, and the condithn+ Ny, =
N (the total number of atoms). Our aim is to sketch the staistf this model
and to introduce the results of photon countingl [47] thadpaes an asymmetric
behavior ofC as function of the population inversian= N/N. In the range] €
(0,1/2) spontaneous and stimulated emission can take place, huirotile range
n € (1/2,1) the condition to have lasing action is reached, becausedpelgtion
must be, at least, inverteqg,> 1/2.

The entropysof this system vanishes whéh or N, is zero. MoreoveiSmust be
homegenous of first order in the extensive variab[é8]. For the sake of simplicity
we approacl® by the first term in the Taylor expansion:

S~ K%—KNn(l n. (1.45)

The internal energy i8 = Noe = eNn and the statistical temperature is:

S\ ' ¢ 1
T= (a_u)N et (1.46)
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Note that forn > 1/2 the temperature is negative as corresponds to the stidulat
emission regime dominating the actual laser action.

We are now interested in introducing qualitatively the tessof laser photon
counting in the calculation of LMC complexity. It was repedtin [47] that the
photo-electron distribution of laser field appears to besgamian. In the continuous
limit the Poisson distribution is approached by the normisirithution [49]. The
width o of this energy distribution in the canonical ensemble igpprtonal to the
statistical temperature of the system. Thus, for a switabhredaser in the regime
n € [1/2,1}, the width of the gaussian energy distribution can be fitiedimosing
0~ —T ~1/(2n —1) (recall thatT < 0 in this case). The range of variation @f
iS [0, Omin] = [0, (211€) ~/?]. Then we obtain:

(27Te)71/2
g 201 (1.47)
By replacing this expression in Ed._(1142), and rescalingdgictor proportional
to entropy,S~ kN, (in order to give to it the correct order of magnitude), LMC
complexity for a population inversion in the range= [1/2,1] is reobtained:

Ciaser~ KN (1—2n)log(2n —1). (1.48)

We can consider at this level of discussi®gser = 0 for n < 1/2. Regarding the
behavior of this function, it is worth noticing the valuge ~ 0.68 where the laser
presents the highest complexity. By following theses idéake width, o, of the
experimental photo-electron distribution of laser fieldrisasured, the population
inversion parametery, would be given by Eq[(1.47). In a next step, the LMC
complexity of the laser system would be obtained by Eq. {1.48

It is necessary to remark that a model helps us to approaatedtiey and pro-
vides invaluable guidance in the goal of a finer understandina physical phe-
nomenon. From this point of view the present calculatiordently only tries to
enlighten the problem of calculating the LMC complexity gbtaysical system via
an unrealistic but simplified model.

1.6 Conclusions

A definition of complexity (LMC complexity) based on a proliatic description

of physical systems has been explained. This definitionadoesbasically an inter-
play between thanformationcontained in the system and tlistance to equiparti-
tion of the probability distribution representing the systerasifles giving the main
features of an intuitive notion of complexity, we show thadllows to successfully
discern situations considered as complex in systems ofyegesreral interest. Also,
its relationship with the Shannon information and the geliwed Rényi entropies
has been shown to be explicit. Moreover it has been possibéstablish the de-
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crease of this magnitude when a general system evolves froeaaequilibrium
situation to the equipartition.

From a practical point of view, we are convinced that thisistiaal complexity
measure provides a useful way of thinkihgl[50] and it can lelpe future to gain
more insight on the physical grounds of models with potébi@ogical interest.
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