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We present experimental results on the shape of arches that block the outlet of a two-dimensional silo. For
a range of outlet sizes, we measure some properties of the arches such as the number of particles involved, the
span, the aspect ratio, and the angles between mutually stabilizing particles. These measurements shed light on
the role of frictional tangential forces in arching. In addition, we find that arches tend to adopt an aspect ratio
�the quotient between height and half the span� close to 1, suggesting an isotropic load. The comparison of the
experimental results with data from numerical models of the arches formed in the bulk of a granular column
reveals the similarities of both, as well as some limitations in the few existing models.
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I. INTRODUCTION

Granular materials present interesting and unusual physi-
cal properties �1,2�. One of their most salient features is the
formation of bridges: stable collective structures comprising
several grains that can withstand the weight above them
�3–5�. Those bridges, or arches, can cause the jamming of
grains in a fixed configuration that is mechanically stable. It
has been argued �6� that this is a generic property of grain
assemblies. In granular materials, arches have been proved to
be important for segregation �7� and nonuniform propagation
of forces �8�, as well as directly related to the packing frac-
tion and the mean coordination number �9–11�. In particular,
it has been found a clear correlation between the steady-state
packing fraction obtained during tapping and the number and
size of arches in the bulk �12�.

One most common phenomenon that is a consequence of
the existence of arches is the arrest of granular flow at the
outlet of a silo. The jamming of a silo has been studied
experimentally both in a two-dimensional �2D� contraption
�13–16� and in a three-dimensional one �17�. In both cases,
attention was paid to the probability of the outpouring being
halted by an arch, which depends on the ratio between the
orifice size and the diameter of the grains �if spherical beads
are considered�. In silo discharge, for intermediate orifice
sizes, arches do not arrest the flow; however, they have been
shown to be responsible for strong fluctuations of the flow
rate �18�.

In the last years, numerical simulations have been widely
used to approach this problem. In �19� the effect of particle
friction and particle size dispersion on arching at the outlet
was studied. More recently, a simple probabilistic model has
been shown to capture some of the principal aspects of arch
formation in hoppers �20�. In other work �21�, a force analy-
sis of the arches formed following simple rules displays good
agreement with the jamming probability obtained experi-
mentally. Despite all these advances in the knowledge of silo
jamming, the attention paid to the geometry of the arches is
scarce. To our knowledge, this issue has only been addressed

in the framework of a study based on the restricted random-
walk model �RRWM� to explain arch formation in a hopper
�15� where some geometrical features were described, and a
comparison with the predictions of the mentioned model was
presented. In addition, there is a lack of knowledge about the
nature of these blocking arches and their precise relationship
with the arches that are developed within a granular column
of deposited particles. Intuitively, one could expect that the
arches spanning over the orifice are of the same kind as those
formed in the bulk, but there is no evidence that this is so.

It is worth mentioning that deciding if a given set of
touching grains form an arch is a rather complex problem. In
general, the history of the contacts has to be considered �22�.
However, the arch that blocks an orifice is simpler to study
since there are no touching grains below the arch. This
makes it possible to identify the particles that form the
blocking arch from a single snapshot.

In this work, we provide a thorough description of the
geometry of arches that block the outlet of a silo. To this end,
we have implemented a 2D setup which allows for visual
inspection of the arches and a systematic description of their
features. This apparatus is described in the following section.
We will also compare our results with those obtained by
numerical simulations of the arches within the bulk of a
granular column �10,22�. This comparison can offer impor-
tant information about the differences and similarities of
arches at the outlet and arches in the bulk. Some conclusions
will be gathered in the last section of this paper.

II. EXPERIMENTAL SETUP AND METHODS

The experimental apparatus consists of a two-dimensional
rectangular silo �500 mm high and 200 mm wide� made of
two glass sheets between which a thin frame of stainless steel
is sandwiched. This frame fixes the gap between the two
glass sheets. At the bottom, there is an orifice whose size can
be changed at will. The granular sample consists of mono-
disperse stainless steel beads with a diameter of
1.00�0.01 mm. In order to give an idea of the internal fric-
tion of the grains, we have measured the avalanche angle,
i.e., the slope of the plane at which an avalanche develops
when a sample is slowly tilted from the horizontal. The value*angel@fisica.unav.es
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of this angle is 18.5° �0.5°, corresponding to a friction co-
efficient of about 0.33�0.02. The grains are poured along
the whole width of the silo from a hopper at the top. The
granular deposit within the silo consists of a monolayer of
particles because the gap between the glass sheets is slightly
larger than the beads. Finite-size effects in the lateral dimen-
sions �corresponding to the width of the recipient� can be
neglected as the silo dimensions �width and height� are much
bigger than the size of the beads and the width of the open-
ing at the bottom. A more detailed description of this device
can be found in Ref. �16�. The aperture of the exit orifice is
given in units of bead diameters: R=D /d0, where D is the
width of the orifice and d0 is the diameter of the spheres.
Since d0=1 mm, in fact R amounts to the width of the ap-
erture in mm.

Once the silo is filled, grains pour freely from the exit
orifice until an arch blocks it. The material flowed until a jam
occurs is called an avalanche. Under proper lighting from the
back, a still picture �Fig. 1� of the spheres near the orifice is
taken �with a standard video camera� when the flow is
stopped and stored for further analysis. Then, the avalanche
size is measured—with a scale at the bottom that collects the
grains flowed through the orifice—in order to validate the
measurements with previous results �16�. Finally, the flow is

restarted by blowing a jet of compressed air aimed at the
orifice. The image and data acquisition system is computer-
ized and the procedure is automated, so that the pictures of
many blocking arches can be registered; the limit is imposed
by the capacity of the silo that has to be refilled whenever the
level of grains falls below a fixed threshold of around 300
mm �1.5 times the width of the silo�. Seven different outlet
sizes were explored, and for each one several thousand
arches were obtained and registered. For some of the orifices,
about 20 000 arches were obtained in order to increase the
resolution in some calculations.

Even though the particles arrange themselves in a mono-
layer, a small overlap between the spheres in the images is
possible because the gap between the glass panes is neces-
sarily slightly larger than the bead diameter. In our device,
however, the overlaps detected are smaller than about 2% of
the particle diameter. We have performed several test runs
with a granular sample consisting of round washers, which
do not overlap, and we found that the appearance of arches is
the same. Spheres were chosen to allow comparison with
previous data that can be used as a benchmark �16�.

From a digital image such as the one shown in Fig. 1, it is
simple to obtain the center of each bead by standard tech-
niques of image processing �23�. In particular, we have writ-
ten a code that involves eroding and dilating the image with
a disk. Subpixel resolution is attainable, but the main limita-
tion for the accuracy in the measurement of the positions is
the overlap of the spheres in the images. We can then easily
measure the number of particles � in the arch �those marked
with an � in Fig. 1, for instance, �=4 in Fig. 1�a��, the span
�defined as the difference between the horizontal coordinates
corresponding to the centers of the leftmost and the right-
most particles marked with white crosses�, and the height
�the vertical distance between the centers of the highest and
lowest particles marked with white crosses�.

III. ARCH DETECTION

The definition of arch as a collection of mutually stabiliz-
ing beads requires the knowledge of which particles sustain
each other in a granular packing. Therefore, the protocols
designed to identify an arch often involve forces between
grains or rely on the history of the grains deposition �22,25�
since, in general, any grain has more contacts than needed to
make it mechanically stable. This information is not easily
accessible in an experiment. This may be one reason for the
limited number of experimental studies where the arches are
studied �13,15,25�, whereas there is some literature reporting
numerical simulations and theoretical studies of arches
�5,10,22,24,26�. We have found that much simpler consider-
ations are needed if the focus is shifted to the arches that
block the exit orifice, leaving all those formed in the bulk.

To identify the blocking arch in a given image from our
experiment, we take the first line �bottom up� of touching
beads that span across the orifice �see the beads marked in
Fig. 1�a��. Since our silo has a horizontal bottom, beads
touching the base are stable per se; therefore, we exclude
from the arch the two end particles on the base. Note that if
our silo had the shape of a hopper, the particles touching the

(d)

FIG. 1. �a� An arch blocking the outlet of the silo. White crosses
indicate the centers of the particles that form the arch. The beads
forming the base �marked with circles� are excluded from compu-
tations, as explained in the text. �b� Example of a bead that hangs
from above the equator �the angle � is larger than 180°�. �c� In
some cases, the arch forms well above the base, with the beads
leaning on one or both sides of the banks of a quasistatic funnel
made of grains. �d� Frequency map of the position of the beads for
about 20 000 arches that blocked the orifice �units are bead diam-
eters; the origin is centered at the exit orifice�. Darker areas corre-
spond to places where the probability to find a bead belonging to an
arch is higher; beads at the base have been included. All data and
photographs in this figure correspond to R=3.03.
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bottom should be considered as part of the arch as they
would not be stable per se. In many cases, the blocking arch
forms upstream instead of being at the outlet. Beads in the
silo may develop a funnel of quasi-immobile particles that
pile up at both sides of the outlet, and arches may form
resting on it �see Fig. 1�c��. In such situations the line of
touching beads detected will bend inward on one or both
sides of the orifice. If the outermost particles do not touch
the base of the silo, we define the blocking arch as the string
of particles that span from the leftmost to the rightmost bead
in the detected line of touching beads, except those touching
the base of the container or forming part of the funnel banks.

IV. NUMBER OF PARTICLES IN THE ARCHES

One of the immediate measurements that can be obtained
from the experiment is the number of beads � that form each
arch. In Fig. 2�a� the probability density function corre-
sponding to different values of R is displayed. �The histo-
grams have been normalized, so that the area below the
curve is equal to 1.� Clearly, the number of particles depends
strongly on the outlet size, because the bigger the outlet the

higher the number of particles necessary to form a blocking
arch. However, all the distributions display the same trend:
an exponential decay for a high number of particles and a
cutoff for a small number of particles imposed by the outlet
size. The shape of the number distribution of particles in the
arches and the exponential nature of the tails imply that the
number of beads per arch has a well-defined average for a
given orifice R.

It is interesting to take a closer look into the tail of the
distribution. Based on a pseudodynamic model, it has been
put forward �10� that the distribution shows a decay sharper
than exponential, such as the series represented by open
squares in Fig. 2�b�. This has also been found in a model of
soft disks with static and dynamic friction �22� �in these
simulations, the dynamic and static friction coefficients were
both set to 0.5�. In probabilistic terms, this would mean that
the arches would be scarcer as a new bead is added by a
factor that increases as the arch grows larger. In order to
assess whether this is the case or not, we have obtained the
number of beads for around 20 000 arches blocking an ori-
fice of size R=3.03, which corresponds to the data set dis-
played with filled squares in Fig. 2�a�. Despite the difficulty
of making a definitive conclusion, the experimental results
seem to indicate that the distribution tail is exponential. It
should be noted that it is impractical to perform more runs
because an increase of about one order of magnitude in the
number of arches investigated is needed just to add one data
point to the plot. With these data, deviation from a straight
line in a logarithmic scale �meaning an exponential decay� is
hard to perceive. This would mean that independently of the
arch size, the probability of adding one bead to an arch can
be calculated multiplying by some fixed factor, as suggested
by Mehta et al. �26�. It should be noted that in the simula-
tions the distributions depend on the packing fraction, al-
though in all the cases the decay seems sharper than expo-
nential. The assumption made in some models, such as those
cited in �16�, that the decay is sharper than exponential
should be reconsidered.

As mentioned above, from the results shown in Fig. 2�a�,
it is clear that the orifice imposes a cutoff in �, below which
no arch can block the exit. Taking as an example the results
for R=3.03, arches with �=4 seem to be less abundant than
expected due to this fact. This effect is even more accentu-
ated for �=3. It may be thought that it is impossible to find
an arch of three particles blocking an orifice of R=3.03.
However, as there are usually two beads touching the silo
bottom that are not taken into account when computing �,
arches with �=3 are still possible for this value of R, al-
though they are scarce.

We have tried to regroup the probability density functions
�PDFs� corresponding to the different orifice sizes R by res-
caling the variable � in various ways. It finally transpires that
just by centering all the distribution peaks at the same point
regroups all the data sets in a single graph, as displayed in
Fig. 2�b�. This in turn implies that there is a linear relation-
ship between R and the average of the number of beads: �̄
=1.41+1.15R �see Fig. 3�. It should be noted that a linear
relationship between the number of beads and R is also ob-
tained if the beads forming the base of the arch �as explained
above� are not discarded. In this case, the coefficients of the

2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

η

P
(η

)

(a)

2.18
2.69
3.03
3.12
3.61
4.21
4.70

−2 0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

η−R

P
(η

−
R

)

(b)

2.18
2.69
3.03
3.12
3.61
4.21
4.70

FIG. 2. �Color online� �a� Semilogarithmic plot of the PDF of
the number of beads � that form the arch for different values of R,
as indicated in the legend. �b� The same results as in �a�, but the
variable is now the number of beads minus the diameter of the
orifice. The symbols � and � display the results obtained, respec-
tively, from pseudodynamic simulations of hard disks �10� and
molecular-dynamics simulations of soft disks with friction �22�.
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fit change slightly. We remark here that the range of R ex-
plored only covers relatively small orifices; an extrapolation
for larger or smaller orifices of this relationship would be
unwarranted. Also note that the error bars shown in the plot
correspond to confidence intervals; the standard deviation is
much larger. This result �i.e., a linear relationship between �
and R� is in good agreement with a previous one that had
been obtained in a hopper filled with disks for a range of R
similar to the one explored here �15�.

The fact that all the normalized histograms, as presented
in Fig. 2�b�, fall on the same curve indicates that the nature
of the arches that jam the outlet is the same for small and big
orifices. In addition, these plots allow a straight comparison
of the experimental arches with those obtained within the
bulk through numerical simulations. In this latter case R=0
has been taken as there is no orifice imposing a cutoff. De-
spite the difference in the tail explained above, the agreement
of numerical results for the PDF with the experimental ones
suggests that the arches formed in the orifice �as observed
experimentally� are a representative subset of all the arches
within the bulk �obtained numerically�. Further comments
about this issue are provided in Sec. VI.

V. GEOMETRICAL PROPERTIES OF THE ARCHES

Apart from the number of beads that arches comprise,
there are several features that can be extracted from the ex-
perimental observations. One of the most interesting quanti-
ties is the horizontal span �15�. In order to establish a con-
sistent comparison with previous numerical simulations, we
have defined the span as the distance between the abscissas
of the centers corresponding to the two outermost beads of
the arch.

One of the first questions that can be asked when looking
at the arch span is whether the arches formed with a given
number of particles display the same span distribution inde-
pendently of the size of the outlet that they block. Generally
speaking, it is found that this is not the case �Figs. 4 and 5�.
But it is true if ��R �Fig. 4�, i.e., provided that the number
of beads is larger than the exit orifice, the arches consisting
of a given number of particles display similar features irre-

spective of the orifice size that they block. In other case, if
��R �Fig. 5�, differences arise between the span distribu-
tions obtained for different R’s, and notably for small spans.
This behavior can be understood if one considers that, for a
given number of beads, the smaller spans are strongly af-
fected by the cutoff length imposed by the size of the orifice.
On the contrary, the arches with larger spans are, in all cases,
larger than the size of the outlet, and hence they are not
significantly affected by it.

As the arch span is not severely affected by the orifice
size �with the condition stated above�, it is possible to aver-
age the data for arches with the same number of particles,
even if they have been obtained with different values of R.
We present the averages calculated for arches with the same
� in Fig. 4. Arches in which ��R display distributions that
are close to a Gaussian, whereas smaller arches—formed by
two, three, or four particles—display a long tail for small
span values �Fig. 5�. These results reveal clear differences
with previous models �10,13�. Arches of up to four particles
present larger spans than those predicted by these models.
However, the agreement between models and experiment is
better for small R �which present broader span distributions�
since the influence of the orifice is reduced. Care should be
taken when these results are compared with those obtained in
a hopper �13�, where the geometry of the outlet could have a
strong influence in the arch properties.

While the span characterizes the size �a direct relationship
can be established between �, the span, and the height of the
arches�, the shape can be characterized by the aspect ratio:
the quotient between half the span and the height of the arch.
To be consistent with the definition of span explained above,
the height of an arch is defined as the distance between the
vertical coordinates of the centers corresponding to the high-
est and the lowest beads of the arch. If the aspect ratio is
equal to 1, then half the span is equal to the height. This is
obtained, for instance, if the arch is semicircular. The aspect
ratio is large for a flat arch and small for a pointed arch.

In Fig. 6, the aspect ratio is presented as a function of the
number of beads in the arch for different values of R. The
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FIG. 3. Average number of beads in the arch that blocks an
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FIG. 4. �Color online� Normalized PDF �in semilogarithmic
scale� of the span �s� of the arches formed by �solid lines, from left
to right� �=5, 6, 7, and 8 beads, obtained with different R’s: �,
2.18; �, 2.69; �, 3.03; �, 3.12; �, 3.61; �, 4.21; �, 4.70. Solid
lines are the averages over all R for each �.
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aspect ratio tends to about 1 when the number of particles in
the arch grows. If the beads at the base of the arch are in-
cluded, the asymptotic limit is even closer to 1. This result
supports the hypothesis of semicircular arches, as introduced
in �15�. Although there may be many defects, by which we
mean beads departing from the angle that would correspond
to a perfect semicircle, a circular path can be considered a
good starting point, validating the approach used by the cited
authors. Additionally, this fact provides a clue about the load
sustained by the arches. If the arch is optimized to sustain a
vertical load, then it would have an aspect ratio smaller than
1. On the contrary, an arch optimized to sustain a horizontal
pressure would adopt an aspect ratio bigger than 1. A semi-
circular arch �with an aspect ratio of 1� is the preferred shape
to optimize an isotropic pressure �27,28�. Some caution is
pertinent here, because a semicircular arch could form for
any variety of reasons apart from the optimization of an iso-
tropic uniform load. Besides, even an aspect ratio of 1 does
not guarantee that the arch should be strictly semicircular.

From Fig. 6, we can also observe that big arches have
approximately the same aspect ratio irrespective of R. This

indicates that the orifice size does not select a particular
shape. However, for small arches �small values of �� the
plots for different R’s display different aspect ratios which
seem to diverge when � decreases. Indeed, it is clear that the
bigger R is, the higher the value of � at which the divergence
takes place. The reason for this behavior is, again, the cutoff
imposed by the orifice. When the number of particles in an
arch is similar to the outlet size, the only types of arches that
can block the orifice are rather flat, and hence the aspect ratio
is well above 1.

VI. ANGLES BETWEEN MUTUALLY STABILIZING
PARTICLES

In the previous section, the results of several parameters
that are related with the global shape and size of the arches
were presented. In order to get further insights on the relative
position of the particles within the arches, we have measured
the angle � between the contacts that support each particle in
the arch �see Fig. 1�b��. Note that every particle in the arch,
except for the end particles, has an associated angle. In Fig.
7 we present the histogram of all the angles associated with
all the beads forming all the measured arches. We have not
found important differences between the PDFs when taking
into account only large �or small� arches or when considering
different spans, heights, aspect ratios, or outlet sizes, and so
all the angles for all the beads in all the cases are displayed
combined in the same plot. The probability distribution of �
reveals that there is a large number of particles �about 17%
of all registered beads� with an associated angle � larger
than 180°. These cases correspond to beads hanging from
above the equator, which are stable due to static friction
since normal contact forces do not contribute to the balance
of their weights. From these results, we can conclude that the
effect of static friction is quite relevant for arch formation.
An example of the important differences that arise when tan-
gential friction is neglected is observed by looking at the
distribution of angles between particles obtained from simu-
lations �Fig. 7�. Clearly, the beads do not display angles
larger than 180°. It must be noted that we have observed the
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same phenomenon �a considerable number of particles hang-
ing from above the equator� in test runs with washers. This
indicates that although the gap between the front and rear
glass panes is a little larger than the bead diameters, the
small overlapping that can occur is not the cause for the large
number of particles with ��180°, because these overlaps
are absent if washers are used.

An interesting question that arises when considering the
angles that form the particles in an arch is whether there is
any kind of correlation among the angles associated with
consecutive particles. In Fig. 8�a� we plot the probability
density map of the angle of the bead i+1 versus the angle of
the bead i in the arch. It can be seen that there is a negative
correlation between these two quantities. This means that a

bead with a large angle will be likely followed by a bead
with a small angle, and vice versa. This result implies that
the appearance of two consecutive beads with large or small
associated angles is unlikely. Indeed, it seems reasonable that
the region of �i�180° and �i+1�180° is forbidden as two
consecutive beads hanging from above the equator would
conform a very unstable structure. Additionally, no angles
are detected in the region of �i�130° and �i+1�130° as
this configuration would generate an arch with a very small
span, likely unable to block the outlet.

The results displayed in Figs. 7 and 8�a� seem to be at
odds with the constraints of the RRWM. In particular, the
existence of angles ��180° implies that the arches are not
necessarily locally convex. Hence, the condition 	i�	i+1 �as
defined by authors in �15�� is not always fulfilled. Moreover,
Fig. 8 hints that the angle could be conditioned by the adja-
cent angles �higher �i means bigger probability of finding a
small �i+1�, which is against the hypothesis of random angles
proposed in the RRWM. However, by considering these two
contradictions together, it results that the RRWM is still
valid. The reason for this lies in the fact that a defect is
always compensated by the angle associated with its neigh-
bors. Indeed, if we calculate the mean of two consecutive
angles ��= ��i+�i+1� /2 and we plot its distribution �Fig.
8�b��, we can see that the probability of finding ���180° is
so small that it can be deemed statistically insignificant: a
clear upper limit in the distribution is displayed at ��
=180°. Then, one could relax the condition stated for the
RRWM to 	i�	i+2. Besides, the plateau in the distribution
around ��=150° –170° means that there is an approximately
constant probability for 	, as required by the model. Then,
although the arch may not be convex everywhere due to
frictional forces, the RRWM is a good approximation as the
local concavity is always compensated by the neighbors.
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VII. CONCLUSIONS

In this work we provide a detailed analysis of the geo-
metrical properties of the arches that block the outlet of a 2D
silo. The experimental results obtained for different outlet
sizes reveal that R does not affect the arch shape provided
that the size of the arch is well above the cutoff length im-
posed by the orifice. We suggest that these arches unaffected
by the cutoff imposed by the orifice are representative of the
arches formed in the bulk. Besides, we show that, at least for
arches with a large span when compared to the orifice size,
an aspect ratio of 1 �height equal to half the span� is pre-
ferred. This seems to hint that a uniform load �the same from
every direction� is at play near the orifice.

The PDF of the number of beads that form an arch dis-
plays an exponential tail, which implies that the probability
of adding a particle to an arch is constant independently of
the arch size �26�. This result contradicts previous simula-
tions where it was suggested a sharper decay than exponen-
tial in two dimensions �10,22�.

Additionally, the measurement of the angles between con-
secutive particles in an arch has unveiled the importance of
static friction forces between grains in the arch formation
process. In particular, we report that in experiments there is a
noticeable probability of finding angles greater than 180°.
The existing models of jamming in a hopper assume that the

only valid angles � between the particles in the arches are
smaller than 180° �13�. When friction is taken into account
this restriction is fully released �13�. However, the correla-
tions displayed by the angles of consecutive particles in our
experiments may alleviate this limitation of the model. As
angles bigger than 180° are almost ever compensated by
neighbors, the RRWM would likely be valid if two consecu-
tive angles are considered.

Note that tangential forces are seldom taken into account
in numerical simulations or models of arch formation
�3,5,21�. We speculate that the role of static friction must be
also of great importance in other granular scenarios. In par-
ticular, some models of particle deposition do not consider
this effect �5,10,24� and should be revisited.
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