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The jamming transition of an isotropically compressed granular packing is studied by means of molecular
dynamics simulations. The system is shown to undergo a critical transition which is analyzed by looking at the
topological structure of the force network. At the critical packing fraction there is a sudden growth of the
number of polygons in the network. Above the critical packing fraction the number of triangles keeps growing
while the number of the rest of polygons is weakly reduced. Then, we prove that in the jammed regime, there
is a linear relationship between the number of triangles and the coordination number. Furthermore, the presence
of these minimal structures is revealed to be connected with the evolution of some important topological
properties, suggesting its importance to understand the physical properties of the packing and the onset of
rigidity during the compression.
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I. INTRODUCTION

Any loose granular system isotropically compressed un-
dergoes a transition from a dynamic state to another “ar-
rested” or “frozen” characterized by its ability to resist dif-
ferent kinds of stresses. The nature of this transition has been
profusely analyzed by many authors under different points of
view and has received different names such as percolating
rigidity transition or jamming transition along the last de-
cades �1,2�. In all the cases a variety of restrictions and ap-
proximations have been included to analyze the critical ori-
gin of this transition. Nowadays it is widely accepted that
when the packing fraction ��� of the system reaches a criti-
cal value �c, the coordination number, Z, coincides with the
isostatic limit which depends on the existence of friction and
the space dimensionality. Beyond the transition, the grow of
Z is intimately related with the complex force distribution
inside the packing �3–6�.

Recently, Majmudar et al. �7� have demonstrated experi-
mentally that an isotropically compressed granular system
undergoes this type of transition. In the experiment, a bidi-
mensional system of bidisperse disks in a stress-free state is
compressed and subsequently decompressed until another es-
sentially stress-free state is reached. The disks were photo-
elastic, allowing a precise determination of the contact
points. The critical packing fraction was roughly calculated
form the point where the pressure started to grow. Hence, the
coordination number could be fitted by the power law Z
−Zc� ��−�c��, where ��0.5 and Zc=3.04. This result was
in excellent accord with previous simulations �8,9�.

Other authors �4� also propose that the development of a
peak in the force distribution is a signature of jamming, ar-
guing that it is a consequence of the apparition of yield stress
within the sample. Alternatively, variables such as the bulk
modulus or the density of vibrational states have been used
to describe the jamming transition for both frictionless �10�
and frictional particles �11�. Makse et al. �5� have shown that
this transition is characterized by a change on the granular
force distribution: the distribution of forces corresponding to
samples weakly compressed decays exponentially and

crosses over to a Gaussian when the packing fraction is in-
creased above the critical value. Near the critical density, the
development of linear “force chains” percolating the simula-
tion box was observed along the compression direction.
Hence, force chains were assumed to be responsible for the
rigidity attained in the final solid state.

Recently, Ostojic et al. have proposed a new universality
class for isotropically compressed granular media �12�. The
authors built force networks by considering only forces
above a varying threshold. Their main finding was that, in-
dependently of the system size or the packing parameters,
the second moment of the cluster size distribution can be
fitted by an universal function of a critical force threshold, fc,
and the system size �measured in terms of the total number
of contacts N�. Although the scaling exponents are universal,
the threshold fc depends on the preparation conditions and its
value is typically slightly larger than the average force of the
packing.

A great advantage of the method used in �12� is that it
examines the properties of the force network without refer-
ring to the widely used concept of “force chains.” An impor-
tant problem of working with force chains is that there is not
a clear definition �13�, and its interpretation may vary from
one author to another. Following the idea of Ostojic et al.
�12� in this work we carry out a structural analysis of the
force network of granular packing resorting to the tools used
in complex networks �14,15�. Assuming that every grain with
at least one contact is a node and the forces among grains are
the links or edges, a graph can be defined for every granular
system and its topology quantitatively characterized. Other
authors have recently shown the usefulness of these tools to
analyze the granular packing structure �16–18�.

In this work we numerically study the force network evo-
lution of isotropically compressed granular materials. In Sec.
II the molecular dynamics simulations and the compression
protocol are described in detail showing that the system un-
dergoes a jamming transition. Then, in Sec. III, the evolution
of the packing during the compression process is described
by looking at several aspects of the contact network topol-
ogy. Section IV is devoted to characterize the final highly
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packed configuration, evidencing the correlations between
force magnitudes and topology. Finally, in Sec. V the results
are summarized and discussed.

II. NUMERICAL METHOD AND COMPRESSION
PROTOCOL

We perform soft particle molecular dynamics simulations
of the isotropic compression of disks in two dimensions. The
granular sample consists on 307 disks of radii R1=D /2, and
1741 disks of radii R2= �7 /9�R1. Hence, the total number of
particles is N=2048. Each simulation starts by setting the
particles in a horizontal setup with random velocities �drawn
from a Gaussian distribution� and random positions in a wide
area such that no grain is in contact with any other. The
packing fraction at this initial state is around 0.1. The inter-
action between disks is through normal and tangential forces
as defined in �19�. The values used for the parameters of the
force model are: �=0.5, kn=105, �n=150, ks= 2

7kn, and �s

=300 with an integration time step �=10−4�D /g. The stiff-
ness constants k are measured in units of mg /D, the damping
constants � in m�g /D, where m, D, and g stand, respec-

tively, for the mass of the disks, the diameter of the disks and
the acceleration of gravity. This numerical method has been
shown to reproduce experimental results of granular flows
�20� and deposits of particles under the action of gravity
�21�.

The test cell consists of four moving walls, composed of
the aforementioned disks, that compress the granular sample
isotropically �Fig. 1�. The compression is kept by applying a
force Fw to the walls that increases by 0.015mg every 103

time steps. The displacement of the walls is determined,
through the equations of motion, by the total force on the
walls which is the sum of Fw and the force that the grains
exert on the walls. The simulations run until a packing frac-
tion ��0.90 is reached. Twenty independent simulations
were carried out yielding essentially the same results. Other
simulations have been carried out modifying some properties
such as the system size, the size distribution of the particles,
the coefficient of friction, the maximum compression and the
geometry of the cell. The dependence of the results on these
parameters was proved to be very small �22�.

It is important to remark that this compression protocol
does not include annealing as most of the works reported in
the literature do �6–10�. Hence, the jamming transition does
not take place from a zero temperature state or point “J”
where there is not any contact among the particles. This fact
can be readily observable from Fig. 2�a� where Z, the aver-
age coordination number, is represented as function of the
packing fraction �. During the whole compression process Z
takes values around 1.5, displaying a sudden jump for �
around 0.84. By analogy with the works that include anneal-
ing, the sudden increase of Z is an indication of the transition
to a rigid state �see also the 5th and the 6th packing of Fig.
1�.

In order to identify the exact point at which the jamming
transition occurs, we examine the evolution of the average
overlap per particle � �Fig. 2�b��. Before the jamming, the
average overlap is almost zero as the particles are in a dy-
namic state, weakly contacting each other. After the jam-
ming, this magnitude grows linearly, and hence the value of
� at which the average overlap starts to grow can be calcu-
lated. Analogously to the jamming transition at the J point,
the value of � at which the average overlap starts to grow
will be taken as the critical packing fraction, �c. For each

FIG. 1. �Color online� Evolution of the granular packing during
the compression process for �=0.596 �Fig. 1�, �=0.741 �Fig. 2�,
�=0.829 �Fig. 3�, �c=0.838 �Fig. 4�, �=0.843 �Fig. 5�, and �
=0.849 �Fig. 6�. The magnitudes of the normal forces are propor-
tional to the widths of the chains.

(b)(a)

FIG. 2. �Color online� �a� Coordination number versus the packing fraction ��� along the whole compaction process. The coordination
number is calculated without taking into account rattlers, particles without contacts. �b� Average deformation ��� rescaled with the radius of
the greater disks �R1� versus the packing fraction. The continuous line is a linear fit.
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simulation run, a slightly different value for the critical pack-
ing fraction is obtained.

Once the transition is identified, the value of Z at this
point, Zc, is determined. Then, for each simulation, the ex-
cess of coordination number Z−Zc is fitted as a function of
the distance to the transition point ��−�c�. All the simula-
tions display the same functionality: Z−Zc� ��−�c�� with
��0.33. This result qualitatively resembles the one obtained
with compression protocols that include annealing, though
the value of the exponent � is significatively smaller �6–10�.
The figures obtained for Zc and �c display a small dispersion
but in all the cases lie close to �c=0.838 and Zc=3 which are
the values of the fit shown in Fig. 3. It is important to remark
that the coordination number is computed ignoring rattlers
and that the values of the exponents depend strongly on Zc
and �c like in jamming experiments at zero stress �see Ref.
�10� of the work of Majmudar et al. �7��.

The transition displayed when the particles are isotropi-
cally compressed was previously analyzed by looking the
force distribution �P�F / �F	�� evolution at different time
steps during the compression �23�. In good agreement with
�5,4�, the force distribution decreases monotonically before
the transition to rigidity and develops a peak beyond the time
at which the average kinetic energy of the system suddenly
decays.

III. EVOLUTION OF THE CONTACT NETWORK
TOPOLOGY

In order to investigate the jamming transition and more
specifically, the structural origin of the excess of coordina-
tion number, we analyze the topology of the contact network
during the compression. As mentioned before, any granular
ensemble can be seen as a complex network formed by a set
of nodes—any disk with at least one contact—and links cor-
responding to the contacts between disks. Two of the several
magnitudes which are commonly used in the framework of
complex networks to analyze these graphs are: �a� the con-
nectivity, k, of a node which is simply the number of links
connected to it and �b� the shortest path length, l, which is
the longitude—measured in number of links—of the shortest
path connecting two given nodes. The average shortest path
between all the nodes of the network �l	 is a magnitude that
characterizes the typical size of the network. Finally, we will
also study the existence of closed topological structures or
“polygons” formed by the links of the network. These can be
defined as closed loops with the same initial and final nodes,
formed by three, four or more steps, which we will simply
term triangles, squares and so on. It is important to indicate
that a condition for a polygon to be considered is that it does
not contain interior links or smaller polygons. In other
words, the polygons considered here surround empty spaces.
The analysis of the polygons developed in the contact net-
work has been recently shown to reveal important informa-
tion about the stability of tilted granular samples �16� and
dense granular materials under quasistatic biaxial loading
�17�.

In Fig. 4�a� the distribution of connectivities P�k� for a
typical run is plotted for different values of the packing frac-
tion. For values of � below �c the distribution shows a maxi-
mum at k=2 indicating the predominance of linear or fila-
mentary structures. Around �c the maximum shifts to three,
and for increasing densities moves to higher values as a con-
sequence of the development of a highly connected network.
In Fig. 4�b� the values of l� �the average shortest path length
�l	 normalized by �N /2� are displayed as a function of the
packing fraction. For small packing fractions, l� is low as the
network is composed of small isolated clusters of connected
particles. When � is increased, nodes and links are added
with the consequent increase of l�. Before �c �dotted line in

FIG. 3. �Color online� Excess coordination number versus the
packing fraction above the critical point. The continuous line is a fit
to Z−Zc� ��−�c�� with �=0.33, �c=0.838, and Zc=3.00. The in-
set shows the same results in logarithmic scale.

(b)(a)

FIG. 4. �Color online� �a� Distribution of connectivities obtained for different values of � as indicated in the legend. �b� l�, the average
shortest path length normalized by �N /2 versus the packing fraction �. The dotted lines indicate l�=1 and �=�c.
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Fig. 4�b�� the average shortest path reaches a maximum in-
dicating the existence of chains connecting opposite sides of
the system that is still in an unjammed state. After the maxi-
mum, l� quickly decreases suggesting the formation of new
links that shorten the distance between nodes that were al-
ready present in the network. It is interesting to note that l�

takes a value of approximately one for the critical density.
Above �c the average shortest path keeps decreasing as new
links form in the jammed sample.

Polygons in the contact network

As mentioned above, the fact that l� decreases before the
jamming transition suggests the development of links short-
ening the distance between nodes that were already con-
nected at smaller values of �. This would imply the appari-
tion of closed loops �polygons� within the network near the
transition point. In Fig. 5 we present the number of polygons
formed of three to seven nodes for different values of �. The
first result that becomes apparent is that at low packing frac-
tions there are only a few �nonstationary� polygons which
indicates that the contact network is mainly linear. When the
packing fraction approaches �c a sudden jump is observed in
the number of polygons. Remarkably, beyond �c the number
of triangles keeps growing whereas the number of other
polygons gently decreases. There is not a clear relationship
between the growth rate of triangles and the reduction rate of
other polygons. Nevertheless, it is clear that the increment in
the number of triangles �NT� should be related with the co-
ordination number above �c. Indeed, the relationship be-
tween NT and � resembles the growth of Z with � displayed
in Fig. 2�b�.

In Fig. 6 the number of triangles NT is displayed as a
function of the coordination number Z. Interestingly, no dis-
persion is found in the transition for the different simula-
tions, suggesting that both magnitudes are strongly related.
While the dependence of NT with Z is nonlinear near the
transition point �23�, the asymptotic dependence seems to be
linear. This linearity indicates that, once the system is above

the critical packing fraction, there is a constant probability of
creating a new triangle when a link is added to the network.
A direct consequence of the proportionality of NT with Z is
that NT versus � could be fitted using the same law than the
used for the excess of coordination number.

IV. FORCE TOPOLOGY IN THE HIGHLY PACKED STATE

In the previous section we showed the importance of the
poligonal structures �in particular triangles� to understand the
critical nature of variables such as the coordination number.
In this section we will analyze the role that these structures
play in the force transmission within the sample. For this
reason we will focus on a highly packed state, with a value
of �=0.892 which is considerably above �c. In order to
characterize the forces inside the packing we introduce a
parameter f =Fth / �F	, where �F	 is the average force in each
sample. Accordingly, the nodes of the network will be the
particles with at least one contact with a normal force above
Fth. Note that the force network built with f =0 includes all
the contacts and hence coincides with the contact network
used in the previous section. On the other hand, tuning f to
values larger than zero, we obtain diluted graphs with vary-
ing behavior of its topological properties. Indeed, when the
parameter f is increased, the network disaggregates giving
rise to the formation of clusters: groups of nodes which are
mutually linked but are disconnected from other groups �f
=1.5 in Fig. 7�. In previous works, the use of these force
networks has been proved to be useful to understand several
properties of granular materials �12,22,23�.

As can be seen in Fig. 7 the force networks obtained for
different values of f display completely dissimilar properties:
for small values of f the force network presents polygonal
structures whereas it is predominantly linear for f �1. Then,
it can be said that polygonal structures disappear when only
high forces are considered. This result is clearly shown in
Fig. 8 where the number of polygons is computed as a func-
tion of f: the number of closed loops is almost zero when
forces larger than the average are considered. This indicates
that the majority of the polygons contain at least one contact
carrying a weak force. In addition, the inset of Fig. 8 reveals

FIG. 5. �Color online� Number of the different polygons versus
�. Inset: the same data in semilogarithmic scale. Different symbols
are used for triangles ���, squares ���, pentagons ���, hexagons
��� and heptagons ���. Triangles are the only polygons which
grow in number after the transition.

FIG. 6. �Color online� Number of triangles �NT� vs Z. Different
symbols are used for three typical runs. The continuous line is a fit
of the asymptotic linear dependence.
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that the number of all polygonal structures decays exponen-
tially as f is increased beyond one. In the region going from
f =0 to f =1 triangles present distinct behavior as they are the
only polygonal structure which number decreases. The num-
ber of the other polygons remains fairly constant or slightly
increases. We speculate that this augment in the number of
high order polygons is a consequence of the reduction in the
number of triangles. It sounds plausible that a triangle that
disappears due to the elimination of one of its edges gives
rise to the apparition of a higher order polygon.

An alternative way to characterize the polygonal structure
is through the clustering coefficient C of the graph �24�. For
a given node i, the clustering coefficient ci is calculated as
ci=ei / �ki�ki−1� /2� where ki is the number of nodes con-
nected to i, ki�ki−1� /2 the maximum number of connections
among those ki nodes, and ei the actual number of connec-
tions among the ki nodes connected to the particle i. In other

words, ei is the number of third order loops that the node i
belongs to. The clustering coefficient of the network C is
calculated as the average of the clustering coefficient of the
individual nodes. Hence, it sounds reasonable that the trend
displayed by the clustering coefficient C versus the force
threshold f �Fig. 9� resembles the one obtained for the num-
ber of triangles �Fig. 8�.

Additional evidence of the filamentary character of the
force networks obtained with f �1 and the polygonal nature
of the force networks obtained with f 	1 can be gained by
looking at the number of nodes �nP� and the number of con-
tacts �nC� in the diluted networks. As a linear chain of nP
grains has nP−1 contacts, a completely filamentary network
formed by one cluster without ramifications must obey nC
−nP+1=0. Hence, from now on we will refer to nC−nP+1
as the excess of contacts EC. Values of EC�0 indicate the
existence of ramifications in the network whereas values of
EC	0 suggest the existence of several filamentary clusters
�25�. In Fig. 10 the excess of contacts is represented as a
function of f for a highly packed state. As it is expected, for
values of f close to zero, the contact network is an intricate
structure with a high number of contacts per particle. When f
is increased, EC rapidly decreases reaching negative values
for f slightly above one. For these f values, the network is
mainly formed by several filamentary clusters as displayed in

FIG. 7. �Color online� A region of a compressed packing ��
=0.892� showing the effect on the network of taking several values
of the parameter f .

FIG. 8. �Color online� Number of polygons in a highly packed
configuration ��=0.892� as a function of the parameter f . The inset
shows the same data in semilogarithmic scale. The legend indicates
the symbols used for triangles, squares, pentagons, hexagons, and
heptagons.

FIG. 9. Clustering coefficient as a function of the parameter f
for the same highly packed configuration than the one presented in
Fig. 8.

FIG. 10. The excess of contacts EC obtained for a packing of
�=0.892 as a function of the parameter f .
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Fig. 7 for f =1.5. For very high values of f the excess of
contacts smoothly grows and tends to zero as the number of
clusters in the network is reduced.

V. DISCUSSION

In this work we have studied a bidimensional system of
frictional grains isotropically compressed. Although the com-
pression protocol does not include annealing we have shown
that the system undergoes a transition that resembles the one
resulting from the zero temperature case. Subsequently, we
have analyzed several topological properties of the contact
network and their evolution during the compression. This
allowed us to find that the transition to a rigid state can be
characterized by the development of a polygonal structure
dominated by triangles which seems to give stability to the
previously formed filamentary structure.

The force network in a highly compressed packing is ana-
lyzed using the threshold parameter f . This study suggests
that the filamentary structure mainly carries large forces
whereas the polygonal structure allocates most of the weak.
This result is in agreement with the idea presented by Radjai
et al. �26� who proposed that the network of contacts of
granular packing is composed of two subnetworks, one
“weak” formed by links carrying forces smaller than the av-
erage and another “strong” constituted by links carrying
forces above the average. In order to prove the validity of
this scenario we have analyzed the evolution of the force
networks obtained for different f as the system undergoes the
transition to rigidity. In Fig. 11 we present results of two
topological indicators of these networks: the average shortest
path length �that was already used for the contact network�
and the giant component GC which is the number of nodes
of the largest cluster in the network.

The giant component displays similar qualitative behavior
for all the states with packing fraction above �c �Fig. 11�a��.

When f is increased from f =0 to f =1 and small forces are
removed from the network, the size of the GC decreases very
slowly. After f =1 the size of the giant cluster decays
abruptly, being vanishing small for f 
1.5. This behavior can
be understood if we remind that the small forces belong to
the polygonal structure. Hence, removing links belonging to
polygons does not affect to the size of the giant component
since their nodes remain connected through other links. Only
a small reduction in GC is obtained due to the disconnection
of single nodes. Above f =1 the elimination of links causes a
decrease in size of the giant component as the remaining
structure starts to disaggregate. For packing fractions below
�c the resulting curves display qualitatively different behav-
ior as in these states the polygonal structure has not been
developed yet. Consequently the region for small values of
f—where the reduction in GC is very weak—is not ob-
served.

In Fig. 11�b� it is shown the average shortest path length
l� obtained for different values of the force threshold in states
with different �. For densities above the critical, l� displays a
peak in the vicinity of the average force which is a result of
the polygonal nature of the weak network, as explained in
Sec. IV. For packing fractions below �c, the peak in l� is not
observed as the polygonal structure is not developed. Hence,
when f is reduced from 1 to 0, shortcuts between already
connected nodes do not appear and l� does not decrease. Let
us mention that in jammed states, the peak in l� is presented
for values of force slightly larger than the average force. The
fact that the values obtained for the critical force in �12� were
similar suggests that both magnitudes could be related.

Interestingly, the features displayed by GC and l� suggest
the possibility to analyze the evolution of the final force
network as a case of continuous percolation �27� where the
contact topology is determined by f . Accordingly, we found
that the value of f where the system percolates �allowing the
connection between opposite sides of the packing� is around
f =1.2 coinciding with the value of f where the giant com-

(b)(a)

FIG. 11. �Color online� �a� Size of the giant component in the network �GC� resulting after applying distinct values of the force threshold
f . GC is given in number of grains and normalized with the total number of grains in the sample �N�. �b� Average shortest path length
normalized by �N /2 for values of f going from 0 to 5. In both figures different symbols are used for different packing fractions as indicated
in the legends.
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ponent of the network GC decreases abruptly and l� displays
a peak. Therefore, a continuous percolation approach could
provide information about the suitable scaling relationships
to analyze this transition.

From the results of GC and l� we confirm that the force
network of an isotropically compressed sample is formed by
two subnetworks: a strong one that is filamentary and devel-
ops before the transition to the rigid state and a weak one,
which is mainly polygonal and develops just in the transition
to rigidity. Additionally, the results reported in this work sug-
gest that polygons—and triangles in particular—play a spe-
cial role in the transition to the rigid state. Indeed, it can be
argued that triangles are the mechanical structures that give
rigidity to the network. This idea is in excellent agreement
with the work of Tordesillas et al. �17� which has been re-
cently published. In this work it is proved that triangles are
important to understand the behavior of a dense granular
material under quasistatic biaxial loading. In addition it is
shown that these topological structures provide a dual resis-
tance to force chain buckling both by providing strong lateral
support to the force chains and by impeding rotation of the
particles. In this sense, Rivier conceives a granular medium

as a set of nodes �grains� connected by rigid bars if they are
in contact �28�. If it is assumed that the grains in contact roll
without slip, the contact points can be considered as flexible
hinges. In a circuit formed by an even number of disks or
spheres all the components can rotate. Thus, a packing with
only even circuits is unable to resist any shear stress as there
is no frustration in the rotations. Instead, odd circuits frus-
trate rotations and this is a sufficient condition for the stabil-
ity of the material. Despite slip among particles is allowed in
our system, we have proved that triangles �the minimal odd
circuits� are key structures to understand the transition to
rigidity.
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