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In this work we study the synchronization between identical pairs of hyperchaotic mathe-
matical systems symmetrically coupled. Calculations are performed firstly in two well-known
hyperchaotic systems, and then compared with the results obtained coupling symmetrically
two Takens–Bogdanov systems (TBS) which represent a bifurcation in Codimension 2 (a point
with two modes bifurcating simultaneously). In all of these systems, complete synchronization
is achieved for some intervals of the coupling strength. As it will be shown, these windows
can be localized by using the representation of the Lyapounov exponents against the coupling
parameter. We analyze here these three models looking for general features in synchronization
of hypercaotic systems, that could be useful to model mutual synchronization of two time-
dependent convection experiments. We plan to use the results obtained in the TBS as a direct
guide to control our experiment because this model was successfully used before to represent
the observed dynamics. The other two systems presented here (Chen and Lü) are used to look
for the possibility of general features and to check the used numerical methods.
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1. Introduction

Hyperchaotic behavior was defined for a nonlinear
system as a dynamical state for which more than
one Lyapunov exponent becomes positive [Rössler,
1979]. This situation arises as a natural regime in
extended space-time systems, delayed systems or
in situations where many oscillators are coupled,
a frequent situation in complex networks. In all
these cases usually it is very difficult to understand
what is happening physically inside the system for
different reasons like the presence of symmetries
restricting the possible solutions, or because delays
are transforming the system into an infinite dimen-
sional one. Sometimes, when the attractor presents
some kind of symmetry properties, it is easier to
adopt a more clear point of view about the system
dynamics.

Synchronization between similar chaotic sys-
tems could make a collective state less complex than

the state of the individual system for the same value
of the control parameter. This result ranges from
chaos suppression to different types of synchroniza-
tion depending on whether the coupling is sym-
metric or not, and also from the strength of the
coupling.

In past works we have shown that general syn-
chronization can be achieved with chaos suppression
through asymmetrical coupling between two identi-
cal low-dimensional chaotic systems for certain val-
ues of the coupling parameter [Bragard et al., 2007].
In that work it was shown that it is possible to find
these values by plotting the Lyapunov exponents
against the coupling parameter.

More recently, we have studied the coupling
dynamics in an hyperchaotic system with D4 sym-
metry and we have shown that this four-dimensional
system shows similar behavior becoming synchro-
nized for some values of the coupling parameter
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[Vidal & Mancini, 2009]. The work was performed
on a mathematical model used in pattern forma-
tion processes [Hoyle, 2006] and it was applied in
time-dependent patterns that appears in convection
experiments where two modes lose stability simulta-
neously (codimension 2 TBS under square symme-
try) [Ondarçuhu et al., 1993]. The interplay between
chaos and symmetry permits the use of some math-
ematical tools from group theory [Gilmore & Letel-
lier, 2007], an approach very useful for discussing
the results when the coupling factor strongly affects
the system dynamics and modifies the attractor.

In the present work, we compare the effects of
coupling two identical hyperchaotic oscillators of
three different origins. Each oscillator is coupled
symmetrically through the variable x. The original
systems are two extended versions from the Lorenz
model (Chen [Gao et al., 2009] and Lü [Lü et al.,
2006]), a classical attractor used in convection, and
the other one is the TBS mentioned before. All
the systems are four-dimensional (x, y, z, w) with
parameter values fixed to obtain an hyperchaotic
behavior.

To perform numerical simulations we use a
fourth order Runge–Kutta method with a ∆t =
10−2 in all cases. For calculating LE in all the sys-
tems we integrate the eight linearized equation sets
of the coupled system. For these, we use the same
Runge–Kutta method with the same ∆t calculat-
ing the exponents in 108 time steps. The Gram–
Schmidt normalization process is done every 50
time steps and this operation requires the most
computational time. We reject a transitory state of
106 time steps before considering the steady state
in the LE calculation. The number of time steps
depends on the volume where our random initial
condition is introduced. We have verified that this
transitory is adequate for a good accuracy on cal-
culations. Also, it is important to remark that some
coupled systems become unstable for initial con-
ditions that are outside even a sufficiently small
region.

2. Chen System

In this section we discuss the Chen system [Zhou
et al., 2004] in one of its hyperchaotic versions.
Concretely this work is based on the equation set
appearing in [Gao et al., 2009]. The difference
between the original Chen and the hyperchaotic one
is an extra variable (w). In the present work, the
equation set is modified to correspond to a system

with two coupled identical attractors. This could be
mathematically written as follows:

x′
1,2 = a(y1,2 − x1,2) +

ε

2
(x2,1 − x1,2)

y′1,2 = −dx1,2 + x1,2z1,2 + c(y1,2 − w1,2)

z′1,2 = x1,2y1,2 − bz1,2

w′
1,2 = x1,2 + k

(1)

As for the case studied above, the coupling
is symmetrically done through x variables. The
parameter values are a = 36, b = 3, c = 28, d = 16
and k being a fixed time delay in the extended
variable. We have fixed the value of k for setting
an hyperchaotic attractor [Gao et al., 2009], there
is another study of this attractor in [Gao et al.,
2008] where the parameter space is explored. For
this attractor, we have calculated the LE and we
have plotted these against the coupling factor in
Fig. 1.

We have found, at least, four different dynam-
ical behaviors depending on the coupling strength
between both attractors. For distinguishing these
cases, we focus our attention on the LE. The first
case corresponds to the noncoupling system, the
second one corresponds to the maximum of the LE,
the third one corresponds to the coupling strength
within the [15, 30] interval and the fourth corre-
sponds to values beyond ε = 30.

The first case is related to the free oscillator
behavior and was studied in several papers as an
introduction of the original system. Here we just
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Fig. 1. Four largest LE against the coupling factor ε for the
Chen hyperchaotic attractor.
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Fig. 2. This figure shows the (x, y) phase plane in (a) and the (z, w) in (b) for the uncoupled Chen’s hyperchaotic system.

show in Fig. 2 a pair of phase planes for taking them
as a reference and also for clarifying the changes in
the dynamics by comparison with the others.

The second case is important in order to
understand the meaning of the maximum in the
LE against the coupling strength factor. Intu-
itively, larger LE implies more confused phase
planes. But this is contradictory because the mutual
information between both systems (S1 and S2) is

given by the equation:

I(S1;S2) = H(S1) + H(S2) − H(S2|S1) (2)

H(S1) and H(S2) being the entropy of each sys-
tem. So the most disordered scenario takes place
when the systems are uncoupled and the mutual
information is minimum. Although there are no
significant differences among the phases planes, it
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Fig. 3. Autocorrelation of x signals in Chen’s hyperchaotic system for a ε of 0 (dotted line) and 3.75 (solid line). There is an
inset in (b) which shows that the first zero crossing occurs for the uncoupled system.
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Fig. 4. The phase planes (x, y) and (z, w) of a coupled Chen system are shown in (a) and (b), and the plots showing complete
synchronization for the variables x, y, z, w are (c), (d), (e) and (f) respectively.
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is obvious that something happens in the coupled
system and, in some sense, the dynamics become
more uncorrelated implying lower sample times. If
we take a look at the autocorrelation of x variable
in Fig. 3, it is shown that the first zero crossing
occurs for the uncoupled system. This result implies
that the embedding dimension is lower in this case
[Abarbanel et al., 1993].

The third case takes place for a coupling
strength value within the interval [15–30] approx-
imately. Note that all the LEs are nonpositives and
then the attractor must be nonchaotic [Grebogi
et al., 1984]. In Fig. 4, the phase planes (x, y) in
(a) and (z,w) in (b) are shown for a coupling value
ε = 16.0. The plots (c)–(f) show the variables from
system 1 against those of system 2, thus showing
that complete synchronization occurs for a coupling
value of ε = 16.0.

Complete synchronization is achieved and
chaos is suppressed. The chaos suppression in non-
forcing coupled three-dimensional chaotic attrac-
tors was studied in [Bragard et al., 2007] and the
case for forced coupling was studied by Patidar et al.
[2002]. Chaos suppression is expected because the
linearized system converts the w variable in a sim-
ple time delay. This case could be compared with
the chaotic attractor studied in [Boccaletti et al.,
2000].

Farther than coupling strength values beyond
ε = 30, the largest LE becomes greater than zero
and chaos returns again, but the system continues
to be synchronized.

3. Lü System

The system studied in this work is another varia-
tion from Lorenz attractor [Lü & Chen, 2002] and
extended to four dimensions, the hyperchaotic Lü
system [Lü et al., 2006], the equation set of which is:

x′
1,2 = a(x1,2 − y1,2) + w +

ε

2
(x2,1 − x1,2)

y′1,2 = −x1,2z1,2 + cy1,2

z′1,2 = x1,2y1,2 − bz1,2

w′
1,2 = x1,2z1,2 − dw1,2

(3)

As in the other cases, the variables are x, y, z
and w, and the parameters are a, b, c and d. It looks
very similar to the Chen system, but in this case
there is a nonlinear term in the extended variable.
In this work we set the parameter values as a = 36,
b = 3, c = 20 and d = 1, in order to obtain an
hyperchaotic attractor with two positive LE. The
phase planes obtained with these values are plotted
in Fig. 5.

As in the other cases studied, the fourth largest
LE against the coupling factor is calculated and the
results are shown in Fig. 6.

In this plot, it is possible to recognize some
different parts that imply different dynamical
behavior. As in the Chen System, the maximum of
the largest LE does not correspond with the uncou-
pled system for the same reason.

Another interesting dynamical behavior occurs
when the fourth largest LE becomes equal to zero.

(a) (b)

Fig. 5. The (x, y) phase plane in (a) and the (z, w) in (b) for an uncoupled Lü system.
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Fig. 6. LE against the coupling factor ε for a Lü hyper-
chaotic attractor. The lines going up and down reveal a
riddled basin. For some initial conditions, the chaos is
suppressed.

We relate this fact to the clearer phase planes now
exhibited for the coupled Lü attractor. In order to
check this fact, we have plotted the phase planes in
Fig. 7 where complete synchronization is achieved.

Finally, some interesting results are shown cor-
responding to the interval where the four largest LE
becomes equal to zero. This implies chaos suppres-
sion for coupling parameter values within [17–20]
interval approximately. The phase planes are shown
in Figs. 8(a) and 8(b). Figures 8(c)–8(f) show how
the systems exhibit some correlation between them

due to the closed shape that appears when the vari-
ables of one system are plotted against the variables
of the other one.

Note that this kind of closed shape in
these plots proves that generalized synchroniza-
tion appears [Boccaletti et al., 2002], i.e. there
exists a function that relates the variables between
both systems. It means that a simpler attractor’s
dynamics does not imply a more restrictive syn-
chronization. In this case, the coupling parameter
transforms the hyperchaotic attractor in a strange
nonchaotic attractor [Feudel et al., 2006].

4. Takens–Bogdanov System

The equation set studied originally by D. Arm-
bruster [Armbruster, 1990], needs a modification in
order to calculate the LE [Vidal & Mancini, 2007].
Here, we show briefly this system, but if further
information is required, a description on it and its
synchronization features are available in [Vidal &
Mancini, 2009]. The mathematical model imple-
mented for the symmetrically coupled system is the
following:

x′
1,2 = y1,2 +

ε

2
(x2,1 − x1,2)

y′1,2 = µx1,2 + x1,2(a(x2
1,2 + z2

1,2) + bz2
1,2)

z′1,2 = w1,2

w′
1,2 = µz1,2 + z1,2(a(x2

1,2 + z2
1,2) + bx2

1,2)

(4)

Let x, y, z and w be the variables and a, b the
parameters related to the physical and geometrical

(a) (b)

Fig. 7. Phases planes of the Lü system for ε = 10. (a) corresponds to the plane (x, y) and (b) to the (z, w).
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Fig. 8. Phase planes (x, y) and (z, w) are shown in (a) and (b) respectively. The plots which relate the variables x, y, z, w
of one system against the other are shown in (c), (d), (e) and (f). In this case, the coupling value is ε = 19.0. Note that
hyperchaos is suppressed and then generalized synchronization is achieved.
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Fig. 9. The (x, y) phase plane and the corresponding time series for the hyperchaotic Takens–Bogdanov attractor are shown
in (a) and (b) respectively. Note that the heteroclinic connection provokes phase shifts between x and y on the time series.
The phase plane (z, w) is omitted due to its similarity with (x, y).

properties of the experiment, and µ the control
parameter. In a convection experiment, this param-
eter is related to the temperature. We have coupled
the attractors through the x variable. So ε is the
coupling strength parameter and the factor 1/2 is
written in order to provide certain symmetry to the
feedback signal.

The phase plane (x, y) for the uncoupled system
is shown in Fig. 9 as a reference for comparing with
the coupled cases, the phase plane (z,w) is omitted
because it is very similar to the first one due to
symmetries.

Also it is important to notice that these results
look like a two Duffing’s oscillators with an hetero-
clinic connection.

Before showing the LE of this system we have
another important remark. This system has two
positive and two negative eigenvalues with only two
eigenvectors, so it is a degenerate saddle-node, with
two instability directions becoming an hyperchaotic
attractor in the sense defined by Rössler in [Rössler,
1979]. But we must be careful using the LE in this
system. We have two positive and two negative LE
but the zero exponent does not appear as expected
[Haken, 1983]. In these kind of systems, LE cannot
be calculated using methods without rescaling and
reorthogonalization [Rangarajan et al., 1998] and
are not related directly to the entropy [Katok, 1980;
Eckmann & Ruelle, 1985; Ott & Yorke, to be pub-
lished]. In spite of this anomalous behavior, LE

have been calculated to detect the synchronization
regions as in the reported systems. To confirm the
LE calculation, we have implemented three different
algorithms [Sano & Sawada, 1985; Wolf et al., 1985;
Press et al., 1992] obtaining similar results.

Once these remarks are done, we can show the
LE against the coupling strength plot presented in
Fig. 10.
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Fig. 10. The four largest LE against the coupling factor ε
for the Takens–Bogdanov under D4 symmetry attractor. The
first and the second largest LE are almost equal.
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Fig. 11. Comparing the (x, y) phase planes (a) and the time series (b) of this figure against the uncoupled system, it is
obvious that some reduction on the complexity occurs for some values of the coupling parameter. In this case, the coupling
strength is ε = 1.5.

We define three regions in these figures by sim-
ple inspection: the first one corresponds to the inter-
val [0, 1.0] where the third and fourth largest LE
decay, the next region is related to the interval
[1.0, 2.0] where there is a different decaying rate for
the fourth largest LE. The last region is related to
the plateau beyond the ε = 2.0 parameter value.
On the other hand, the lines going up–down prove
that a riddled basin [Alexander et al., 1992] and
a bubbling transition are involved [Venkataramani
et al., 1996]. Because the LE changes, the dynamics
of the system also change depending on the initial
conditions.

First, let the phase planes be shown in Fig. 11,
and the time series corresponding to the coupling
parameter values inside the LE valley.

Comparing these figures with the first it is obvi-
ous that the heteroclinic connection is destroyed by
the coupling effect. Moreover, it is possible to define
a phase in the time series signals using Hilbert
Transform [Kantz & Schreiber, 1998] because it is
easy to define a center where the trajectories spin
around. These facts imply that the system becomes
simpler than the uncoupled one.

In Fig. 12 is shown that the mean quadratic
error tends to zero as time tends to infinity, thus
there exists a complete synchronization between
both attractors for a coupling value inside the sec-
ond region defined above. Comparing Fig. 9 with
the second region in Fig. 11 for a coupling factor

ε = 1.5, it is obvious that there is a reduction on
the complexity of the system.

Next step is to look what happens for a coupling
parameter value outside the LE valley for a ε = 10.
The plots that show these results are in Fig. 13.

In this case, the system looks simpler than
the uncoupled case and a “quasi-synchronization”
appears between x variables because x1 ≈ x2 but
x �= x2. On the other hand, it is not possible to
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Fig. 12. The mean quadratic error for ε = 0.75 shows that
complete synchronization is achieved. The insets show how
the error decreases exponentially.
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Fig. 13. The phases planes for the D4 attractor (x, y) and the time series of these signals are shown in (a) and (b) respectively
for a coupling strength parameter value of ε = 10. The synchronization plots for x, y, z and z are shown in (c), (d), (e) and
(f) respectively. Note that an increase in the coupling strength does not imply a more restrictive synchronization, in this case
the effect is the opposite, i.e. the loss of complete synchronization. Also note that the phase planes look more confusing than
for the case of ε = 1.5.
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define univocally a phase using the Hilbert’s Trans-
form as in the Fünnel attractor, a particular case of
the Rössler attractor [Pikovsky et al., 2001]. These
new features suggest that the mutual information
[Thomas & Cover, 1991] between both coupled sys-
tems decrease because the signals are spread on the
phase planes and the systems become more uncorre-
lated than in the case when the coupling parameter
is inside the second region.

5. Conclusions

We have calculated the four largest LE against
the coupling factor through one variable between
two identical hyperchaotic symmetrically coupled
attractors.

It is shown that a window in the LE exists for
all cases. Also, if the coupling strength is adjusted
into this window the system’s complexity is reduced
and some kind of synchronization exists.

Furthermore, we conclude that an increase in
the coupling strength does not imply a further
decrease in the complexity of the system or a
more restricting synchronization between the cou-
pled pairs of identical oscillators.

On the other hand, chaos suppression exists
for the extended hyperchaotic systems (Chen and
Lü) but not for the Takens–Bogdanov hyperchaotic
oscillator where the heteroclinic connection disap-
pears.

Chaos suppression does not imply complete
synchronization as for the Lü attractor. But
sometimes could happen as in the hyperchaotic
Chen attractor where complete synchronization is
achieved by chaos suppression.

For the hyperchaotic Takens–Bogdanov and Lü
attractors, complete synchronization is achieved,
but in different regions of the LE against the cou-
pling strength plot. For the Lü attractor, the win-
dow implies generalized synchronization.
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