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The existence of small order loops of contacts is presented as an intrinsic characteristic of force
granular networks. Based on molecular dynamics simulations, it is proposed that the presence
of these small order loops — and in particular third order loops of contacts — is important to
understand the transition from fluid-like to solid-like behavior of granular packings. In addition,
we show a close relationship between the development of third order loops and the small forces
of the granular packing in the sense that almost all third order loops allocate a force component

smaller than the average.
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1.

The process of jamming in disordered systems such
as gels, glasses, foams, and granular assemblies has
attracted the attention of many physicists in the
last few years [Liu & Nagel, 2001]. The reason seems
to be the apparently common behavior that all
these systems present near the jamming threshold
[Liu & Nagel, 2001]. Some authors [Cates et al.,
1998] have proposed that the origin of the jammed
state is the spontaneous development of internal
structures as a response to external loads. Hence,
the response of any of the former systems will be
elastic with respect to a compatible load whereas
incompatible loads — when the compression axis
is different — will cause plastic rearrangements.
Understanding how this internal organization is
a consequence of an externally applied stress has
become one of the main goals for the physics of dis-
ordered media.

A remarkable property of static granular pack-
ings is their highly heterogeneous force distribu-
tion [Liu et al., 1995; Mueth et al., 1998] which
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can be observed in Fig. 1(a). Direct observation of
stresses in granular packings is possible using pho-
toelastic discs illuminated through crossed polar-
izers [Behringer et al., 1999; Zuriguel et al., 2007;
Zuriguel & Mullin, 2008]. The images thus obtained
show that stress propagates in the form of fila-
mentary structures or “chains” that conform to
the so-called “force network”. Indeed, it is widely
accepted that these filamentary force chains develop
spontaneously at the onset of jamming of granular
materials. The main actors behind this complex
organization are particle—particle interactions. The
probability distribution for the interparticle normal
forces P(F') in granular materials has proved to be,
in most cases, an exponential tail for forces higher
than the average [Mueth et al., 1998]. Yet it has
been found that a qualitative change in the P(F)
allows to distinguish between flowing and jammed
systems [Corwin et al., 2005]. Moreover, a recent
thorough experiment showed that the tail of the
distribution is qualitatively different if the jammed
configuration is obtained by isotropically shearing
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(a) Schematic diagram of the numerical experiment. Discs are represented as circles and forces as red bonds. Super-

imposed gray bonds are the edges for the graph obtained for forces larger that the mean force. (b) Zoom of a third order loop
inside the graph. (¢) Normalized probability distribution function of the interparticle normal forces at the times (7) shown in

the legend.

or compressing the system [Majmudar & Behringer,
2005]. O’Hern et al. [2001] showed that the appear-
ance of a well-defined maximum in the force distri-
bution is also a distinctive signature of jamming
in granular media. Other works show that P(F)
depends on the interparticle friction [Silbert et al.,
2002], and the hardness of the grains [Antony, 2002].

Alternatively to the shape of the P(F'), other
parameters have been found to be related to the
transition from fluid-like to solid-like behavior in
granular media. Longhi et al. [2002] found a clear
dynamical signature of jamming when granular
media is flowing through an orifice. Specifically,
they found that the distribution of time interval
between collisions tends to a power law when the
size of the orifice is reduced and the jammed state
is attained. It is important to note that in this
case, arrested states appear in the system as a sud-
den change in the dynamical state. Consequently,
such transition is far from the “zero temperature”
equilibrium states where many authors have devel-
oped a theoretical formalism to describe the jam-
ming transition [O’Hern et al., 2003]. Henkes and
Chakraborty [2005], based on a mean-field approx-
imation, proposed two order parameters that may
characterize the transition from the jammed to the
unjammed state: the average force per contact and
the deviation of the average number of contacts
from the isostatic value. This theory was in good
agreement with the experimental results shown
recently by Majmudar et al. [2007] who found a dis-
continuous increase in the mean contact number or
coordination number Z at a critical volume frac-
tion ¢. This result is also in excellent accord with

previous simulations [Silbert et al., 2002; O’Hern
et al., 2002].

Despite these, and many other, important
results, the mechanism by which a flowing media
stops its dynamics and develops a collective arrested
state is not yet well understood. The force dis-
tribution is intimately related with the topology,
and the topology is related with the history of
the grain assembly. The rigidity of a jammed state
is undoubtedly determined by the existence of a
contact network where loads, like information in
a graph, propagates. Force and network interde-
pendency has been studied by some authors under
different assumptions [Jacobs & Thorpe, 1996;
Mourkazel, 1998; Snoeijer et al., 2004]. Recently an
explanation for the origin of rigidity in a granular
packing has been proposed by Rivier who repre-
sented a 3D granular packing as a graph with fixed
length edges linking grains in contact and flexible
hinges where the grains can rotate without slid-
ing into each other [Rivier, 2006]. He found that
the dynamical stability of granular materials was
caused by the frustration arising from odd circuits
or loops of contacts, whereas a material with only
even circuits was not frustrated and constitutes a
novel state of matter: a dry solid unable to resist
shear.

In this work we explore the topological prop-
erties of the force network in the spirit proposed
by Rivier [2007] and Ostojic et al. [2006]. There-
fore, the contact topology is studied as a graph
where particles are nodes and the interacting forces
between them are edges. Under this scope we can
asume that the force distribution inside the media is
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defined by the history of the contact network. Thus,
we study the development of small order loops of
contacts near the onset of jamming. In particular,
we focus on the study of the minimal loops of con-
tacts i.e. third order loops where three particles
contact each other and we show that most of the
small forces of the network are allocated in these
structures.

2. Numerical Method

We perform soft particle molecular dynamics sim-
ulations of the isotropic compression of a frictional
granular sample consisting of 307 disks of radii R,
and 1741 disks of radii Ry = (7/9)R in two dimen-
sions with a linear interaction force. The values used
for the parameters of the force model are: the fric-
tional coefficient (u = 0.5), the elastic constant
(k, = 10%), a dissipative coefficient v, = 150, and
the corresponding ones for the tangential compo-
nent (ks = %kn and 75 = 300) with an integration
time step & = 10~%r. The stiffness constants are
measured in units of mg/R, the damping constants
v in my/g/R and time in 7 = y/R/g. Here, m and
g stand, respectively, for the mass of the discs and
the acceleration of gravity. The simulation protocol,
which is explained in detail in [Arévalo et al., 2006],
has been shown to reproduce experimental results of
the granular flow through an orifice [Mankoc et al.,
2007] and the arrangement of particles near a ver-
tical wall in a semi-pile [Zuriguel et al., 2008]. In
this experiment, we consider only the horizontal
case and therefore, there is no gravity acting on the
System.

The simulation starts by setting the particles
with random velocities and positions (drawn from
a gaussian distribution) in a wide area. The test
cell compresses the granular sample isotropically
[Fig. 1(a)]. The compression is maintained by
applying a force that increases constantly until a
predefined value is attained. Alternatively other
simulations have been carried out modifying some
properties such as the system size, the sizes of the
discs, the friction coefficient, the maximum com-
pression and the geometry of the cell. Dependence
of the results on these parameters was proven to
be very small [Arévalo et al., 2009]. We performed
20 simulations in order to average the results. In
the following, triangular brackets (---) are used to
indicate mean values on each run and the averages
obtained from the 20 simulations are indicated in
bold type.

In order to achieve a better understanding of
the origin of the jamming transition, the granular
sample has been analyzed as a force network graph
at each unit of time 7 (10* simulation time steps).
Graphs can also be built considering as edges only
normal forces between grains that exceeds a thresh-
old value f. Thus, grains are nodes only when they
have, at least, a normal force above f. Hence, the
network obtained for any force larger than zero is
what we will call the “contact network”.

3. The Analysis of Third Order
Loops

It is widely known that when a sample of grains
is compressed there is a transition from fluid-like to
solid-like behavior. In this paper, we check this tran-
sition analyzing the evolution of several variables
as the simulation is carried out. Let us arbitrarily
define 7 = 0 as the time where the kinetic energy
falls below 0.1% of the total energy. We found
that there is a discontinuity in the mean coordi-
nation number Z at 7 = 0 [Fig. 2(a)]. Other vari-
ables like the potential energy accumulated in the
system or the number of contacts or edges also
display a discontinuity at 7 = 0. In addition, the
analysis of the P(F/(F')) for different 7 reveals a
qualitative change in the shape of the histogram
before and after the jamming transition [Fig. 1(c)]
in good agreement with [O’Hern et al., 2001]. In
the solid-like state (7 > 0) a maximum of small
forces appears in P(F/(F)) whereas in the fluid-
like state (7 < 0) the force distribution displays a
monotonous decrease.

Let us now concentrate on the properties of the
network before and after the transition from fluid-
like to solid-like behavior. Among all the properties
of the force and contact network that can be stud-
ied [Boccaletti et al., 2006], we focus here on the
number of small order loops of contacts, and more
specifically in the simplest of these structures: the
third order loops of contacts or triangles. A third
order loop is defined as a three-step walk where the
first and third nodes are the same [Fig. 1(b)]. Tri-
angles are important because they are the minimal
subgraph that satisfy the Laman rigidity theorem
in 2D [Laman, 1970]. Accordingly, third order loops
are the minimal odd circuits that provide rigidity to
the developed “fragile” jammed state [Rivier, 2006].
The number of these loops is given by the cluster-
ing coefficient C' = C; times the number of nodes
with C; = 21;/k;(k; — 1), where [; is the number of
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Fig. 2.

edges between the neighbors of node ¢, and k; is its
number of neighbors [Costa et al., 2007]. Another
way to obtain the number of third order loops is
by using the third moment of the adjacency matrix
[Goh et al., 2001].

The evolution of the number of triangles for
different times is presented in Fig. 2(b). The first
result that becomes evident is that the number of
triangles suddenly grows at 7 = 0. Furthermore,
the transition in the number of third order loops is
more abrupt than the transition for the connectiv-
ity. This fact is displayed in Fig. 3(a), where the
number of third order loops for a typical run is
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(a) Mean coordination number of the contact network versus time. Different symbols represent the data obtained for
different runs. (b) The number of third order loops versus time.

shown as a function of Z. Hence, it may be stated
that the existence of third order loops is a property
of rigid granular media since its number is almost
zero when the granular media is deformable and
takes a finite value when the media behaves like
a solid. Third order loops are connected between
them by higher order loops which eventually could
suffer internal rearrangements if an annealing pro-
cess would be applied. In any case, a further increase
of the packing fraction will imply a larger number
of three particles contacting each other and there-
fore, third order loops will be present in any jammed
state developed by a disorder media.

104

(a) Number of third order loops versus the mean coordination number Z of the “contact network” for a single run.

(b) Number of third order loops (NT) as a function of Z. The crossover between NT o Z> and NT o Z*? allows us to
calculate with good accuracy the critical value of the coordination number Z..
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An interesting question that may arise when the
results of Fig. 3(a) are considered is the interdepen-
dence between the number of third order loops NT'
and the number of contacts which define the average
coordination number of the network (7). Indeed, it
seems reasonable to speculate about the possibility
that the increase in the number of third order loops
is just a consequence of the increase of Z. In the
following, we answer this question by introducing a
probabilistic approach.

Consider the final graph as an empty network,
the dependency of the number of triangles as a func-
tion of the number of edges can be calculated. Given
a polygonal configuration with £ edges and V ver-
tices (or nodes), as for instance, a triangular lattice
with finite boundary, we can calculate the probabil-
ity of obtaining k triangles when selecting randomly
“e” edges and therefore, the expected number of tri-
angles obtained.

Defining a triplet as any subset of three edges
of the network, there are Ny, = (? ) possible
triplets in the network. The probability that a
triplet corresponds to a triangle of our network is
p= (NTmaX/(g)), where NT .« is the total number
of triangles present in the graph. On the other hand,
selecting e edges is equivalent to selecting n = (;)
triplets. Then m = NT.x is exactly the number of
triplets that form triangles. Hence, the random vari-
able XT'= number of triangles obtained after select-
ing n edges, follows a hypergeometric distribution
P(XT = k) = f(k, Nyip, m,n):

n n—k
f<k7Ntrip7m7n> - Ntrip )
n

max(0,n +m — Ngip) < k <min(m,n) (1)

The expectation is given as E(XT) =
n(m/Nyip) which in our original formulation in
term of vertices and edges is

MXT)G)??ﬁXNﬂmxde
3

Provided that Z is a linear function of e (Z =
2e/V') we expect NT to grow with the coordina-
tion number as NT o Z* when the graph is ran-
domly filled. This dependence of NT on Z is clearly
observed in the numerical experiments for the val-
ues of Z corresponding to 7 > 0 [Fig. 3(b)] and
has also been reported in tilted two-dimensional

granular packings [Smart & Ottino, 2008]. However,
before this period, the growth rate of N'T is clearly
larger than Z® and a well-defined crossover can be
identified. Note that in this case we refer to averaged
values. As can be observed in Fig. 3(a), each par-
ticular run displays some dispersion in the values of
NT before jamming which may depend on the ini-
tial conditions. On the contrary, all the simulations
describe exactly the same dependence for 7 > 0
with no evidence of such dispersion. The result
shown in Fig. 3(b) indicates that above the tran-
sition from fluid-like to solid-like behavior the new
contacts in the network form third order loops as
in a random graph and then NT o Z3. On the
contrary, before the transition, there is a growth in
the number of triangles sharper than the expected
NT o Z3.

The crossover between both relationships of
NT with Z allows us to estimate with good accu-
racy the critical coordination number Z. at which
the jamming transition takes place. This is indeed
one of the most difficult tasks when proving the crit-
ical behavior of such a transition. From the results
of Fig. 3(b) we obtain that Z. = 3.04 £ 0.1 for this
particular configuration.

Once the number of third order loops has been
shown to display a characteristic behavior in the
transition to a rigid state, let us analyze its relation-
ship with the force distribution on the network. In
Fig. 4, NT is displayed for the final jammed state as
a function of f/(F): the force threshold above which
forces are considered to build the network (f) nor-
malized by the mean force ((F)). It is evident that
when f is increased, the dilute graph contains a
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Fig. 4. Number of third order loops (NT) in the force
network of a jammed state (7 = 850) for different force
thresholds (f/(F)). Inset: a semilogarithmic plot of the same
results.



902 R. Arévalo et al.

significantly lower number of third order loops. In
fact, N'T shows a clear cut off as a function of f (see
inset of Fig. 4). It is also remarkable that for a force
threshold equal to the average, the dilute network
contains less than 5% of the third order loops in
the contact network. Consequently it can be stated
that 95% of the triangles include, at least, a force
smaller than the average. We speculate that this
result is closely related to the idea introduced by
Radjai et al. [1996] about the presence of two force
subnetworks: a “load-bearing” percolating network
carrying a force larger than the average, and a “dis-
sipative” network carrying a force smaller than the
average. Hence, the load-bearing network would be
a subgraph with no small order loops whereas the
“dissipative” network could be a subgraph formed
basically by small order loops [Arévalo et al., 2009].

In order to test the assumption that third order
loops carry small forces of the network, we intro-
duce Pr, the probability to find a force of magni-
tude F/(F') in a third order loop of contacts. The
values of these probabilities for different 7 are dis-
played in Fig. 5. Certainly for 7 < 0, Pr is near
zero for all F//(F) as there are no third order loops
in the contact network. Nevertheless, after the jam-
ming transition Pr is a monotonic decreasing func-
tion of F'. Indeed Pr reaches values larger than 0.6
when F/(F) tends to zero. This value is consid-
erably higher than 0.269 which is the probability
that an edge of the contact network belongs to a
third order loop of contacts and hence, the expected
value for Pr if the forces were randomly distributed

0,6

0,0 Je=t=r= = :

Fig. 5. Probability that a force (F/(F)) falls into a third
order loop of contacts. Different symbols correspond to the
probability for the force networks at different times (see leg-
end). The dashed line represents the probability that an edge
belongs to a third order loop of contacts in the final jammed
state (0.269).

within the final graph. Thus, a conclusion can be
drawn in the sense that third order loops, which
are intrinsically rigid, are able to catch the small
forces of the network. Accordingly, the presence
of third order loops in the network should have a
strong influence in the shape of the probability dis-
tribution for the interparticle normal forces P(F).
This idea is in good agreement with the fact that
before jamming — when there are no third order
loops in the graph — P(F') decreases monotonically,
whereas after the jamming transition — when there
are third order loops of contacts in the network —
the probability function displays a peak and diffe-
rent laws are necessary to fit the profile.

4. Conclusions

In this work we show that the development of small
order loops in the contact network is a key ingredi-
ent in the jammed state of granular materials. Addi-
tionally, we have found a clear relationship between
the triangular arrangements of particles and the
small forces in the network. Such observation has
an important practical consequence: experimental
methods need to determine univocally the topol-
ogy of the small forces between particles in order
to understand completely the jamming transition.
A careful experimental evaluation of the interde-
pendence between topology and small forces could
give an explanation of the rigidity developed by a
jammed ensemble. The role that parameters like
friction or hardness of the grains have in the devel-
opment of third order loops and their relative mag-
nitude with respect to other small order loops is
still unresolved. Preliminary results show similar
global behavior with higher number of third order
loops in the jammed state when these parameters
are reduced.
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