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In a quasi-1D thermal convective system consisting of a large array of nonlinearly coupled oscil-
lators, clustering is the way to achieve a regime of mostly antiphase synchronized oscillators.
This regime is characterized by a spatiotemporal doubling of traveling modes. As the dynamics
is explored beyond a spatiotemporal chaos regime (STC) with weak coupling, new interact-
ing modes emerge through a supercritical bifurcation. In this new regime, the system exhibits
coherent subsystems of antiphase synchronized oscillators, which are stationary clusters follow-
ing a spatiotemporal beating phenomena (ZZ regime). This regime is the result of a stronger
coupling. We show from a phase mismatch model applied to each oscillator, that these phase
coherent domains undergo a global phase instability, meanwhile the interactions between oscil-
lators become nonlocal. For each value of the control parameter we find out the time-varying
topology (link matrix) from the contact interactions between oscillators. The new characteristic
spatiotemporal scales are extracted from the antiphase correlations at the time intervals defined
by the link matrix. The interpretation of these experimental results contributes to widen the
understanding of other complex systems exhibiting similar phase chaotic dynamics in 2D and 3D.

Keywords : Complex dynamics; spatiotemporal phase synchronization; clustering; complex
networks; collective synchronized dynamics; antiphase oscillators.

1. Introduction

Complex systems, in nature, may undergo phase
synchronization transitions driven by inertia, e.g.
spatially extended multicellular systems of self-
sustained oscillators in physics, chemistry, biology
and neuroscience. The departure regime is a spa-
tiotemporal chaos regime (STC) developed from a
weak coupling between the units of the ensemble.
However, under certain conditions, from this ini-
tial regime of STC, complex systems may display
a simplified dynamics, which is described by fewer
degrees of freedom, due to the effect of synchro-
nization sustained by nonlinearities. For instance,
in hydrodynamics, for highly developed turbulent

flows, the interaction between vortices produces
low-dimensional coherent structures like the large-
scale vortices observed in von Kármán flow [de la
Torre & Burguete, 2007], or for weakly developed
turbulence, far above the stationary rolls spirals
arise in Rayleigh–Bénard convection [Morris et al.,
1993].

During the last years, the challenging field of
complex networks has given rise to extensive reports
[Boccaletti et al., 2006] and renowned articles [Stro-
gatz, 2001]. Experimental works in the field of com-
plex networks with coupled nonlinear oscillators
have been performed in: Josephson junction arrays
[Fabiny & Wiesenfeld, 1991], chemical oscillators in
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the Belousov–Zhabotinsky reaction [Fukuda et al.,
2005] and in the CO oxidation on platinum crystal
[Falcke & Engel, 1995], extended arrays of nickel
electrodes in sulfuric acid [Kiss et al., 2002], arrays
of semiconductor lasers [Kozyreff et al., 2000].
Recent theoretical models have performed extended
multicellular systems with ring geometry [Abrams
& Strogatz, 2006; Rajesh & Sinha, 2008].

Depending on the range of interactions between
the oscillating units in a network, synchroniza-
tion phenomena can be classified into: global
synchronization (all-to-all), local synchronization
(between nearest neighbors) and nonlocal syn-
chronization (farther than the nearest neighbors).
Recent research works have focused on time-
dependent phenomena driven by nonlocal coupled
oscillators [Tanaka & Kuramoto, 2003; Shima &
Kuramoto, 2004]. A priori, under critical controlled
conditions interactions between convective diffu-
sively coupled cells are expected to be local.

The dynamics of complex system consisting
of an ensemble of coupled oscillators, far enough
from the first instability, can be described from
their phases φi(t). This phase dynamics can shed
light into the understanding of critical phenomena
when a subsystem of oscillators bifurcates towards
a new oscillatory state represented by an average
phase Φ(t). This synchronized ensemble of oscilla-
tors defines a cluster.

First attempts on phase synchronization or
self-entrainment theory were originally introduced
by Winfree for biological communities [Winfree,
1967], and afterwards this theory was developed
by Kuramoto [2003] in the phase reduction theory
of weakly coupled limit cycles (KM) for an ensem-
ble of N identical oscillators with global coupling.
To characterize a phase synchronization transition,
we look for an order parameter (or parameters)
that quantifies the way in which the system evolves
towards the new state. From the average synchro-
nized phase of the system Φ (cluster phase synchro-
nization), KM [Kuramoto, 2003] defines the order
parameter reiΦ for the ensemble of N oscillators
with random phases φj :

reiΦ =
1
N

∑
j

eiφj (1)

We report experimental results concerning a
quasi-1D convective system whose behavior can
be understood as the resulting dynamics of N ≈
80 convective cells (oscillating thermal plumes).
These oscillators define a geometric network as they

are placed on a spatially extended array. Coexist-
ing with a stationary pattern (ST) of wavelength
ks, which imposes a discrete space symmetry,
there are irregular and stationary clusters of time-
dependent patterns where oscillators are preferably
in antiphase (counterphase) with their nearest
neighbors, the kind of limit-cycle oscillators. Sim-
ilar patterns of clusters have been observed in
the Belousov–Zhabotinsky reaction–diffusion sys-
tem with global feedback [Vanag et al., 2000].

The results reported here contribute to study
time-varying topologies as we increase the driving
force. We extract the topology from the dynam-
ics, and we characterize the synchronization clus-
tering process in the spatiotemporal beating regime
(ZZ) from the antiphase matrix. Regarding topol-
ogy, we find parallel contributions to the field of
complex networks [Timme, 2006; Bialonski & Lehn-
ertz, 2006]. Other efforts towards the understand-
ing of similar systems are developed in terms of
dynamical weights from adaptive processes [Zhou
& Kurths, 2006], taking into account a varying cou-
pling strength.

The aim of this paper is to understand the
natural phenomenon of interacting oscillators in a
1D convective system. Inside the regime of spa-
tiotemporal beats, the coupling between oscillators
becomes nonlocal as the driving force is increased.
This nonlocal coupling is responsible for a global
transition deduced from the correlation times. For
each control parameter value a time-dependent con-
nectivity matrix is built. An order parameter is
obtained from the cross-correlations between the
critical phases (φc

i ) of N oscillators, and it is shown
to be of the order of the spreading size of the new
synchronized phase.

2. The Convective Problem

Our convective layer of fluid is situated in a rect-
angular vessel (Lx × Ly, Lx � Ly) opened to the
atmosphere. The fluid used is transparent to vis-
ible light (silicone oil with a viscosity of 5 cSt).
Quasi-1D-dynamics is caused by heating the fluid
layer along a line which is placed underneath and
at the center. This line is provided by placing a
heater rail below the mirror that sustains the fluid
layer. The temperature at the lateral walls in the
larger direction is controlled at 20.0 ± 0.1◦C, the
same as the room temperature. The array of convec-
tive cells is observed using the shadowgraphy tech-
nique which reveals the fluid dynamics inside the
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bulk of the layer on a screen. The control parameter
is the vertical temperature difference, ∆T , between
the constant temperature along the heating line
and the room temperature. Extended details on the
experimental setup are found in a previous work
[Miranda & Burguete, 2008]. We have explored the
range ∆T = [0–30]K for depths of the fluid layer
of d = [2.5–5] mm. The corresponding stability dia-
gram (d versus ∆T ) has been already reported from
the analysis of the spatiotemporal signals S(x, t)
[Miranda & Burguete, 2008, 2009]. At each asymp-
totic state, these signals are obtained by recording

the shadowgraphy image along a line x = [0, Lx]
next to the center.

In the shadowgraphy image [Fig. 1(a)], an
oscillator will be associated to each one of these
convective cells (or hotspots) along the heating line.
The acquisition line to record the spatiotempo-
ral signal S(x, t) is represented in Fig. 1(a) by a
blue line. This line is placed parallel to the aligned
uprising hotspots in the center. The correspondent
brightness profile [Fig. 1(b)] allows to track the
oscillators position in time. This is given by select-
ing the implied relative extrema from Fig. 1(b). We
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Fig. 1. (a) Photograph of the shadowgraphy image, dark spots at the center line correspond to the ascending hot plumes
(hotspots). The continuous blue line represents the acquisition line recording the spatiotemporal diagrams S(x, t). (b) Instan-
taneous brightness profile along the 1D-array (over the acquisition line). λs is the wavelength of the stationary ST pattern.
The bright spots (resp. dark spots) in the top (resp. bottom) figure correspond to the position of two adjacent oscillators.
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Fig. 2. (a) Shadowgraphy image at ∆T = 32 K; (b) trajectories of the oscillators tracked from the frame in (a); (c) sketch
of the trajectories for a few oscillators separated at the characteristic spatial scale 2λs in the ZZ pattern. Black filled circles
indicate the contact interaction loci (connectivity type I), white filled circles indicate the minimum distance between oscillators
without collision (connectivity type II). Discontinuous lines are a guide to the eye showing the observed characteristic zig-zag
(ZZ) pattern (temporal beats).

choose a characteristic spatial scale defined by the
wavelength 2λs of the oscillating thermal cells in
these instabilities.

In Fig. 2(a) we show a typical spatiotempo-
ral diagram S(x, t) above the threshold of the sec-
ondary bifurcation to a zig-zag regime, the ZZ
pattern. This spatiotemporal diagram corresponds
to the acquisition of global information about the
interaction of N elements upon time. This global

information, as it is explained later in Sec. 3, can
also be divided into N -oscillating units [see the
corresponding tracking of N = 5 oscillators in
Fig. 2(b)]. From each S(x, t) diagram, bidimen-
sional Fourier fast transform captures the essence
of the global oscillations into a set of regional
peaks. In the Fourier space, each peak corresponds
to a mode with a well-defined “spatiotemporal
frequency band”. From the data analysis, for each
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fundamental mode we get M(k, ω), where the
wavenumber k and the frequency ω are the maxima
of each peak [Miranda & Burguete, 2008, 2009].

For a constant depth d = 3 mm, as ∆T is
increased beyond the ST regime, waiting for the
asymptotic state to settle, the system goes through
a “mixed pattern” in a STC regime. This STC
regime is characterized by the presence of several
irregular clusters. Oscillators belonging to these
clusters perform an alternating pattern (ALT) (with
wavenumber ks/2 ≡ ks/2 and with frequency ωalt)
which coexists with the ST pattern in a mixed
ST/ALT regime. From the coalescence of these
various spreading phase subsystems the dynamics
undergoes a supercritical bifurcation towards a new
state of spatiotemporal beats (ZZ). This ZZ pat-
tern is composed of two phase subsystems with high
spatiotemporal coherence. It is characterized by a
zig-zag geometry due to the splitting of the tempo-
ral frequency into (ωalt, ωzz) with ωzz � ωalt. Also,
there is a spatial frequency splitting into (ks/2, kzz)
with ks/2 � kzz, which is responsible for the exis-
tence of two high coherent patterns. This ZZ regime
calls for a phase description obtained from the sig-
nal of each oscillator. At the STC regime, weak
coupling can sustain irregular clusters meanwhile,
in the ZZ regime, a stronger coupling locks the
phase into stationary clusters. From the diagrams
S(x, t), we have shown in a previous work [Miranda
& Burguete, 2009] the evolution of the fundamental
modes in the mixed ST/ALT and the ZZ regimes,
and also that the oscillating frequencies increase lin-
early with the control parameter. For thicker lay-
ers, the oscillators are able to synchronize moving
towards one privileged direction, a traveling wave
regime (TW) [Miranda & Burguete, 2008].

Phase mismatches between 50 oscillators, calcu-
lated using a spatiotemporal cross-correlation signal
processing, provide the framework to understand
the spatiotemporal coherence of the beating regime
from a nonlocal coupling. New dynamical condi-
tions like stronger nonlinear coupling set a longer
interaction range, further than first neighbors (three
interacting oscillators). An increased number of
interacting oscillators is the result of strongly inter-
acting convective cells, we might think of a new
structured flow that encloses several long-ranged
interacting cells.

On the other hand, connection topologies are
not fixed because the topology of the network is
defined by time-varying links between the oscilla-
tors. The loci of the links are determined from the

collapsing interactions between the nearest neigh-
boring oscillators (link matrix). In these contact
interactions two convective cells are colliding.

Also, we measure the synchronization range
(number of synchronized oscillators) given by the
correlated synchronized phases φi. These phases
are obtained demodulating the raw phase Ψi of
each oscillator nearby the selected synchronization
frequency (ωi = ∂tφi). These raw phases Ψi are
functions of the several unstable or critical temporal
modes.

Hence, in our 1D-array, a “critical phase”
(φc

i ) emerges at the threshold of the synchro-
nization transition for each oscillator. This criti-
cal phase φc

i slightly shifts from the cluster phase
Φ. Under these conditions, the developed analy-
sis techniques reported here are somehow inspired
by Eq. (1) (KM). The key is to build a mini-
mum cross-correlation matrix (antiphase matrix)
and the corresponding matrix of time lags at min-
imum correlation (≡ maximum antiphase correla-
tions) between each pair of oscillators.

3. Spatiotemporal Phase
Synchronization Transition Scenario

In our ensemble of oscillators, the phase chaotic
regime extends over the STC and ZZ regimes.
Firstly, short-range interactions (due to diffusive
coupling) are able to develop a regime of STC. In
this regime, spatiotemporal correlations in the sta-
tionary pattern decay due to the increasing presence
of irregular clusters. This chaotic dynamics corre-
sponds to an inhomogeneous growth of the ALT
pattern until a critical value [Miranda & Burguete,
2009]. Secondly, a phase synchronization regime is
characterized by the presence of beats, ZZ (see the
sketch for the temporal beats in Fig. 2(c)). These
beats are due to a small shift in the spatial and tem-
poral frequencies. From now on, we will focus on
the latter synchronization transition. Experimen-
tal results follow this ZZ regime for an ascending
sequence of 5 K by steps of 0.5 K. Spatial desynchro-
nization appears for higher control parameter val-
ues with the presence of phase singularities. Thus,
a temporal synchronization only remains.

When the original signal along the entire
ensemble S(x, t) is decoded for N = 50 oscillators
[e.g. for a few oscillators from the N -ensemble, see
Fig. 2(b)] we obtain an individual signal for each
i-oscillator: Xi(t) = xi + Ai cos[Ψi(φalt

i , φzz
i , φ◦

i )],
where Ψi is the raw phase containing all the
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involved critical phases φc
i (for the ALT and ZZ

characteristic phases), and φ◦
i is a constant phase

shift. In this way, we are able to understand how do
the oscillators interact in space and time.

We demodulate Ψi around the emerging unsta-
ble mode ωzz

i = ∂tφ
zz
i , the new phase associated

to each oscillator is simply given by φi(≡φzz
i ). The

cross-correlation phase vector is given by:

Cij(ωzz, τl) = 〈cos(φzz
i ) cos(φzz

j )〉 (2)

where τl are the time lags, e.g. if we take a couple of
oscillators (i, j) in antiphase, this behavior belongs
to the characteristic alternating pattern ALT (two
counteroscillating modes with ±ωalt), then τl is
given by the half of a period T (T/2 is the time
that takes the i-oscillator Xi(t) to catch up with
the j-oscillator Xj(t + T/2)). Because the great

majority of oscillators are in antiphase, the cross-
correlation vector Cij happens to show the strongest
correlation between neighboring oscillators in the
minima of the cross-correlation vector (antiphase
conditions). This fact naturally comes from the type
of attractive–repulsive interaction between oscillat-
ing units. In order to extract information about
the phase correlations along the array we study
this antiphase matrix [see Figs. 3(a) and 3(b)]
defined as:

Aij(ωzz) = min
τl

Cij(ωzz, τl) (3)

This is a N × N matrix whose elements are
given as the minimum of Cij (maximum antiphase
correlations) at their corresponding time shifts τl.
Conclusively, we may consider that this matrix
is actually supplying the “degree of phase shifts”
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Fig. 3. Surface views of the antiphase correlation matrices Aij(ωzz) at the critical frequency mode ωzz for two phase syn-
chronization states at (a) ∆T = ∆Tc = 31 K and (b) ∆T = 34 K. The corresponding link matrices Lij generated by contact
interactions between oscillators are shown in (c) for ∆T = ∆Tc = 31 K and (d) ∆T = 34K.
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between each oscillator regarding the cluster syn-
chronization phase: |φi − Φ|. In this way, the
cluster phase Φ fulfills the following definition
∂tΦ(t) = ωzz ≡ ∑n

i=1 ωzz
i /n, where ωzz is the aver-

age critical mode of n ≤ N synchronized oscillators.
As we show in Figs. 3(a) and 3(b) the surface rep-
resentation of the matrix Aij(ωzz) contains the cou-
pling nature between all-to-all oscillators of a 1D
array. In these figures the depressed regions (the
deeper ones) correspond to the higher synchronized
oscillators defining the boundaries that surround
clusters. Hence, as we increase the control param-
eter a new phase synchronization domain emerges
which correspond to the spatial beating phenom-
ena: two stationary clusters [Fig. 3(b)].

Along the ascending sequence in ∆T , from
the analysis of τl applied to an oscillator belong-
ing to the cluster (n = 31), it has not been pos-
sible to establish any dependence on ∆T . From
this point on, our research follows the information
given the antiphase matrix, Aij(ωzz) whose values
inside a cluster are kept sufficiently small, below
a fixed correlation value Aij(ωzz) = ε (for this
sequence ε = −200 [Figs. 3(a) and 3(b)]). There-
fore, ε is kept constant in order to guarantee the
phase locking between neighboring oscillators for
the whole oscillators array and for a whole sequence
of measurements. When the first stationary cluster
emerges from Aij(ωzz) the critical control parame-
ter is ∆Tc = 31 K [Fig. 3(a)].

We define the order parameter Z(ωzz) to quan-
tify the dynamics of the complex network as we
increase the control parameter. Firstly we define for
each i-oscillator Zi(ωzz) (as we move from the left
to the right):

Zi(ωzz) =
η≤N∑

j=i+1

fij, where

fij =

{
1 Aij(ωzz) < ε

0 Aij(ωzz) > ε
(4)

The result given by Zi(ωzz) = η means that
for a given i-oscillator, the following number η ≤
N of oscillators are highly correlated to it. From
this analysis we are able to determine the maximum
number of synchronized oscillators in a cluster at
the asymptotic state determined by ∆T . Thus, the
order parameter is obtained from:

Z(ωzz) = max
i

(Zi (ωzz)) (5)
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Fig. 4. Order parameter values Z(ωzz) for the ascend-
ing sequence. The vertical dashed line splits two different
regimes. Horizontal solid lines show averaged values of the
number of oscillators involved in clusters.

for an i-oscillator belonging to the cluster. In Fig. 4
we find out, far from the threshold (∆T > 33 K)
and for the spatial coherent subsystem (station-
ary cluster in ZZ), that 15–17 oscillators are cou-
pled, but for the same pattern and lower control
parameter values approximately 5 oscillators are
coupled.

The outstanding presence of the spatial coher-
ent domains (spatial beats) as the system moves for-
ward a global synchronization instability is shown
from the average correlation time 〈τ〉 [Fig. 5(a)].
The assigned average value 〈τ〉 for each con-
trol parameter value is obtained from the cor-
relation times of the whole array τi. These are
measured from the maximum time interval at which
|Cij(ωzz, τl)| decays to |Cij(ωzz, τl)|e−1 for τl = 0. In
Fig. 5(b) we show the distribution of τi for three
representative control parameter values. Far from
the threshold (at ∆T = 34.5 K), τi reaches the top
time recording value for almost all the oscillators, in
contrast to the values obtained below the threshold
(at ∆T = 28 K). Clearly, at the threshold (∆Tc) the
oscillators belonging to the cluster show the longest
correlation times [Fig. 5(b)].

But there is still one missing piece in this net-
work puzzle, when we ask about what is going on
with the interaction range in the overall ascend-
ing sequence towards this global synchronization
instability. Regarding a nonlinear hydrodynamics
point of view, we might think of a new dynamics
of the convective cells in the phase chaotic regime,
a kind of package ∆n consisting of more than
three interacting oscillators. This wider “enveloping
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Fig. 5. (a) Average correlation time 〈τ 〉 versus ∆T , discontinuous line is a guide to the eye; (b) correlation time (τi) for each
oscillator at ∆T = 28, 31, 34.5 K. Top and bottom continuous lines represent the maximum and minimum time correlations,
dotted lines for ∆T = 31K are a guide to the eye.

convective cell ” could not be the effect of a merely
diffusive local coupling as for the ST regime. The
ZZ regime might be sustained by a stronger non-
linear coupling between oscillators. If we choose
three oscillators from the array [see Figs. 6(a)–
6(c)]: n = 25 (this oscillator belongs to the front of
the right-hand side cluster only far from the thresh-
old [Fig. 6(c)]) and n = 35, 37 (these belong to
the cluster on the right-hand side [Figs. 6(b) and
6(c)]), then representing |Anj(ωzz)| for a fixed i = n
and j = 1, . . . , N , from Figs. 6(a)–6(c), we find
out higher phase correlation values, and therefore
stronger coupling, the further the control parameter

is from the threshold. Besides, the decay tendency
of the antiphase cross-correlations between the
selected oscillators and the nearest neighbors is
smoother far from the threshold [Fig. 6(c)], consid-
ering the abrupt decay of |Anj(ωzz)| between nearest
neighbors in Fig. 6(a). We observe how this strong
coupling is already outstanding at the threshold
[Fig. 6(b)]. These last results might allow us to
determine an effective nonlocal interaction range
∆n from the cross-correlations. Nevertheless, the
topology (link matrix) will be involved in these
results, as it will be shown in the next section, from
the colliding positions between oscillators.
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Fig. 6. Antiphase cross-correlations Anj(ωzz) (j = 1, . . . , N) for oscillators n = 25, 35, 37 at: (a) ∆T = 28 K; (b) ∆T = 31
K and (c) ∆T = 34.5 K . Continuous and dashed lines are a guide to the eyes. Vertical dashed lines define the cluster domain.
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Fig. 6. (Continued)

4. Time-Varying Topology

Our objective is to decode some topological aspects
such as geometric loci of the oscillators and the
degree of connectivity from the dynamics of our 1D
coupled network. It is interesting to consider the
degree of attractive interaction between oscillators,
regarding this fact we could define two kinds of con-
nectivities [sketch in Fig. 2(c)]: type I for an over-
lapped pair of oscillators, a collision between two
adjacent hotspots has been produced; and type II

when the distance between two neighboring oscil-
lators reaches a minimum but without collision. In
the following, connectivity always refers to type I.

In the synchronized regime ZZ, we build the
link matrix Lij by locating in the tracking image
[e.g. Fig. 2(b)] the contact loci between two adjacent
antiphase oscillators that satisfy: Xi−1(t) = Xi(t)
[see sketch in Fig. 2(c)]. A link point is a colli-
sion position, this means that a couple of oscillators
overlap at the same time that the linking is affecting
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Fig. 7. (a) Running averages over 62 seconds of the link matrix Lij at ∆T = 31, 32 K; (b) running averages over 62 seconds
of the link matrix Lij at ∆T = 34, 34.5 K. Red and blue doubled arrows show the temporal beat period (envelope) and the
internal wave (carrier) period respectively.
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Fig. 7. (Continued)

at least four oscillators. After filtering contact links
provided only by oscillators with frequency ωzz,
Lij is nonzero only at these contact loci [e.g.
Figs. 3(c) and 3(d)]. The analysis of Lij shows that
as the system is getting far from the threshold the
number of links increases. Moreover, it allows to
study how the dynamics of the rewiring connec-
tions, for different control parameter values ∆T ,
plays a role in the coupling interaction between
oscillators.

The link matrix Lij provides quantitative infor-
mation about the evolution of the number of links
in time. This information is simplified by taking

running averages over a time interval (Fig. 7). We
choose 62 s as the time to average, which approx-
imately corresponds to half of the periodicity of
the temporal beating. From Lij along the ascending
sequence, we recover the characteristic time periods
from these graphics (Fig. 7). The envelope of the
temporal beat and the internal wave (carrier) peri-
ods are approximately 120 s and 15 s respectively
[Figs. 7(a) and 7(b)]. At this point, we look for
an homologous cross-correlation phase behavior at
times belonging to the minima (tm with a lower
degree of links), and maxima (tM with a higher
degree of links) of the running averages over Lij .
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Fig. 8. (a) Cross-correlation vector at time of maximum linking, Cij(ωzz, χl)|t=404s (t = 404 s time of maximum linking deter-
mined by the maxima of link matrix Lij) for ∆T = 345. K . Module of the spatial correlations: (b) at minima |Cij(ωzz, χl)|t=100s

for ∆T = 33.5 K; (c) at maxima |Cij(ωzz, χl)|t=797s for ∆T = 34.5 K; (d) at maxima |Cij(ωzz, χl)|t=61s for ∆T = 33.5 K.
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Fig. 8. (Continued)

In order to study this effect we obtain the cross-
correlation phase vector for a fixed time:

Cij(ωzz, χl) = 〈cos(φi(tm,M )), cos(φj(tm,M ))〉 (6)

where χl is the oscillators lag χl = 1, . . . , N . When
the number of links is zero the “spatial” cross-
correlation phase vector is chaotic, meanwhile when
the number of links is nonzero the typical cross-
correlation vector is similar to Fig. 8(a). From the
absolute value |Cij(ωzz, χl)|tm we identify a corre-
lation length of 4–5 oscillators [Fig. 8(b)] with low
peaks at the cluster size (13–17 oscillators belonging
to the clusters). Otherwise, from the absolute value
|Cij(ωzz, χl)|tM we identify the maximum correlation
“length” at the cluster size of approximately 15–18
oscillators [Fig. 8(c)]. But certain cross-correlation
behavior, like that in Fig. 8(d), still shows the
maximum coupling strength around four oscilla-
tors. Thus, far from the STC regime, in the ZZ
phase synchronization transition, we are allowed to
consider that the dynamics affects the underlying
topology of the network.

From these results, it follows that nonlocal cou-
pling existing along the ZZ regime could be pos-
sible. This coupling might go beyond first neigh-
bors (∆n > 3), differing from the kind of cou-
pling that was already shown below the threshold in
Fig. 6(a) for ∆n = 3. In the ZZ regime, because the
interaction range is wider than a purely diffusive
one we might certainly expect roughly ∆n = 4–5
oscillators.

5. Discussion and Conclusions

We have reported the study of a synchroniza-
tion transition beyond spatiotemporal chaos in a

hydrodynamic system. This consists of an ensem-
ble of N ≈ 50 identical oscillators (the size of
each oscillator is approximately of 6 mm in a
real array 80 oscillators), developed in a fluid
layer under 1D thermal convection [Miranda &
Burguete, 2009]. These coupled i-oscillators (i =
1, . . . , N) whose signals are given by: Xi(t) = xi +
Ai cos[Ψi(φalt

i , φzz
i , φ◦

i )], are placed in the array at
their respective “zero positions” (xi), which settle
two very close wavenumbers: ks/2 and kzz; and have
two close critical frequencies: ωalt and ωzz = ∂tΦ,
respectively. We have described the synchroniza-
tion process in terms of the individual phases φi

regarding the cluster phase Φ, that is, the analy-
sis of the antiphase matrix Aij(ωzz). The surface
of Aij(ωzz) defines the stationary cluster domains
for the critical mode ωzz, in addition, it shows no
significant correlation for ωalt. The number of syn-
chronized oscillators is defined by Zi(ωzz) = η < N
for i = 1, . . . , N and agrees with the assigned high
time correlation values τi.

We might notice that from the time lag anal-
ysis between each pair of oscillators (i, j), defined
as τl,i ≡ τl,j(mod Tzz) (module Tzz = 2π/ωzz), is
more difficult to recover the number of synchronized
oscillators (Zi(ωzz)) than from the analysis of the
antiphase matrix. Furthermore, the averaged value
of time lags (in the ascending sequence) between
an oscillator belonging to the cluster regarding the
remaining oscillators, show no connection with the
increasing time correlations.

The values of Zi(ωzz) for an i-oscillator belong-
ing to the cluster on the left are less well-defined
than the ones from the cluster on the right, and
the corresponding amplitude inside the cluster hap-
pens to be “turbulent” for the critical mode ωzz. It
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should be taken into account that the order param-
eter Z(ωzz) depends on the phase distribution along
the 1D-array. From Fig. 4, we show that the num-
ber of coupled oscillators belonging to the clus-
ter increases from 5 to 17 for higher values of
the control parameter. Although the frequency is
a monotonically increasing function with tempera-
ture ωzz(T ) [Miranda & Burguete, 2009], Z(ωzz) is
not a continuous function of ∆T . At ∆T = 33 K,
the order parameter and average time correlation
correspond to a desynchronized pattern.

Results from Figs. 6(a)–6(c), obtained from the
antiphase matrix, shows the type of the coupling
interaction between the oscillators at the boundary
and the oscillators belonging to the synchronized
domain. In Fig. 6(b), it is shown that for the most
distant oscillator (n = 25) from the boundary of
the synchronized ZZ pattern, the phase correlation
decays “more quickly”, as it is expected from a dif-
fusive coupling of the type Anj(ωzz) ∼ e−βx (short
interaction range). Meanwhile for the remaining
oscillators belonging to the cluster, the antiphase
correlation has a smoother decay. This fact should
be interpreted as the consequence of a longer inter-
action range in an “envelope roll” of ∆n = 4–5
interacting oscillators.

In our spatially extended array, we have shown
the dependence of the network topology on the
dynamics (Fig. 7). The increasing number of con-
tact interactions provide a sensitive dynamics which
is revealed by the peaks in the spatial correlations
between oscillators at |Cij(ωzz, χl)|tm,M

[Figs. 8(a)–
8(d)], also we get the size of the clusters.

We have shown that the wiring of connections
from the link matrix Lij, is not fixed, neither in
space nor in time. From the phase description the-
ory (KM), a suitable model for an ensemble of
identical i-oscillators, in the framework of nonlocal
two-way coupling for attractive–repulsive interac-
tions, could be (i = 1, . . . , N):

φ̇i = Fi(φzz
i , φalt

i , . . . , φ◦
i )

+
N∑

j=1

Hij(t) · Γij(φi − φj) (7)

Each i-oscillator has its own dynamics repre-
sented by Fi as a function of the critical phases. The
time-dependent connectivity function is the adja-
cency matrix Hij(t) = Mij ·Gij(t). From ∆n (given
by the analysis of the running averages of the link

matrix Lij) we can build an adjacency matrix at
zero time Mij(0) such that Mij = 1 if |i− j| ≤ ∆n,
and Mij = 0 otherwise. The time-dependent con-
nectivity, extracted from Lij , might be mapped into
Gij(t). The coupling function between oscillators
is Γij(φi − φj), for this type of model equation
Eq. (7) comes from a slow perturbation (e.g. with
Γij(φi − φj) � sin(φi − φj) [Kuramoto, 1975]), the
real coupling function in the ZZ regime might have a
more complex behavior according to a varying cou-
pling strength that depends on the control param-
eter Γij(φi − φj ,∆T ).

For a supercritical bifurcation, a phase descrip-
tion might not necessarily hold for any regime far
from the first instability, because the possible cou-
pling between the amplitude and the phase should
play a role. Regarding this fact, synchronous behav-
ior in the array is related to the existence of an
unstable traveling mode ωzz with enough ampli-
tude to start synchronization (keeping strong val-
ues in |Aij(ωzz)|) sustained by nonlinearities. When
this critical mode ωzz is missing the rewiring of
connections is only due to the mode ωalt. This
mode represents weak coupling for counteroscillat-
ing modes, and moreover, the corresponding inter-
action range still represents the kind of diffusive
transport (of heat and viscous momentum) that
one may expect from a local coupling [Fig. 6(a)].
In conclusion, the reported results for an spatially
extended system show how the amplitude of the
unstable mode plays a role in the phase synchro-
nization process (e.g. according to numerical works
[Vadivasova et al., 2001]). Besides, nonlocal cou-
pling could explain similar transitions in nature
and experiments, as it has been reported in recent
theoretical works [Abrams & Strogatz, 2006]. This
synchronization phenomena is a new challenge that
might need to be considered in the theory of cluster
formation.
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