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Semantic memory is the subsystem of human memory that stores knowledge of concepts or
meanings, as opposed to life specific experiences. The organization of concepts within semantic
memory can be understood as a semantic network, where the concepts (nodes) are associated
(linked) to others depending on perceptions, similarities, etc. Lexical access is the complemen-
tary part of this system and allows the retrieval of such organized knowledge. While conceptual
information is stored under certain underlying organization (and thus gives rise to a specific
topology), it is crucial to have an accurate access to any of the information units, e.g. the con-
cepts, for efficiently retrieving semantic information for real-time need. An example of an infor-
mation retrieval process occurs in verbal fluency tasks, and it is known to involve two different
mechanisms: “clustering”, or generating words within a subcategory, and, when a subcategory is
exhausted, “switching” to a new subcategory. We extended this approach to random-walking on
a network (clustering) in combination to jumping (switching) to any node with certain proba-
bility and derived its analytical expression based on Markov chains. Results show that this dual
mechanism contributes to optimize the exploration of different network models in terms of the
mean first passage time. Additionally, this cognitive inspired dual mechanism opens a new frame-
work to better understand and evaluate exploration, propagation and transport phenomena in
other complex systems where switching-like phenomena are feasible.

Keywords : Random-walks; complex-networks; information retrieval; cognitive systems;
switching-clustering.
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1. Introduction

Semantic memory is a distinct part of the declar-
ative memory system [Tulving, 1978] comprising
knowledge of facts, vocabulary, and concepts acqui-
red through everyday life [Squire, 1987]. Contrary
to episodic memory, which stores life experiences,
semantic memory is not linked to any particu-
lar time or place. In a more restricted definition,
it is responsible for the storage of semantic cat-
egories and naming of natural and artificial con-
cepts [Budson & Price, 2005]. It is known that
this memory involves distinct brain regions and
its impairment in neurodegenerative diseases such
as fronto-temporal dementia [Libon et al., 2007],
multiple sclerosis [Henry & Beatty, 2006] and
Alzheimer’s disease [Rogers & Friedman, 2008] pro-
duce verbal fluency deficits. For this reason, lexical
access, the cognitive information-retrieval process
in charge of retrieving concepts, has been widely
explored through semantic verbal fluency tasks in
the context of neuropsychological evaluation [Lezak,
1995]. These tests require the generation of words
corresponding to a specific semantic category, typ-
ically animals, fruits or tools, for a given time.
Although the task is easy to explain, it actually
results in a complex challenge where retrieving as
many concepts as possible in a limited time depends
more on cognitive mechanisms than on the knowl-
edge itself. According to the two-component model
proposed by Troyer [Troyer et al., 1997], optimal
fluency performance involves a balance between
two different processes: “clustering”, or generating
words within a subcategory, and, when a subcat-
egory is exhausted, “switching” to a new subcat-
egory. In the case of naming animals, clustering
produces semantically related transitions (e.g. lion-
tiger) and switching is a mechanism that allows to
jump or shift to different semantic fields (e.g. tiger-
shark). While the former is attached to the tempo-
ral lobe of the brain, the latter has been associated
to a frontal lobe activity [Troyer et al., 2002]. Evi-
dence of the interaction between these two regions
of the brain during language related tasks has led
to a number of studies related to a fronto-temporal
modulation or interaction [Poldrack et al., 1999;
Troyer et al., 2002].

In this paper, the cognitive paradigm that con-
sists of retrieving words from a semantic network
[Rogers & Friedman, 2008; Thornton et al., 2002]
was generalized to an exploration task on a net-
work. Clustering was modeled as a random-walker
constrained to the topology of the network and

RANDOM
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Fig. 1. Switcher random walks: transitions between nodes in
a graph can occur through random movements following the
edges (black arrows) but also through switches (red arrows).
Switching allows a more efficient exploration, since clustered
graphs might have difficulty finding rare paths between sub-
graphs. Isolated modules in particular (circle) would be sel-
dom reached and rarely abandoned through random walking.

switching as an extra-topological mechanism that
is able to move from any node to another (see
Fig. 1). The combination of these two processes gave
rise to a dual mechanism denoted here as switcher-
random-walker (SRW), i.e. a random-walker with
the additional ability of switching. The combination
of switching and clustering, i.e. free jumping and
random walking, was ruled by a parameter q, which
is the probability of switching at every step, and
thus is the parameter that metaphorically rules the
fronto-temporal modulation. Therefore, the comple-
mentary (1 − q) is the probability of clustering at
every step, and can be interpreted as the strength
of the local perseverance of the exploration before
moving somewhere else within the network (spe-
cially for those networks with either high cluster-
ing coefficient or high modularity). This cognitive
inspired paradigm gives rise to the following ques-
tion: how does switching and its modulation affect
random exploration of different network models?

Search, propagation and transport phenomena
have been studied in networks [Bollt & Ben-Avra-
ham, 2005], where it is crucial to define whether
the full topology is known. When it is known,
the ease to reach any node from another is mea-
sured by the shortest path length [Tadic & Rodgers,
2002; Watts & Strogatz, 1998]. When it remains
unknown, exploration is modeled by random walks
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along the network [Noh & Rieger, 2004]. This case
involves retrieving concepts since the subject is
not aware of his full semantic network when nam-
ing them. In this type of cases, reachability of
nodes is measured with the mean first passage
time (MFPT), i.e. the averaged number of steps
needed to visit a node j for the first time, start-
ing from a node i [Catral et al., 2005; Snell, 1959].
Given its relevance in complex media, this paradigm
has been recently revisited in a number of stud-
ies [Catral et al., 2005; Condamin et al., 2007;
Noh & Rieger, 2004].

While different derivations of random-walkers
have been recently used to infer the underlying
topological properties of complex networks [da Fon-
toura Costa & Travieso, 2007; Gómez-Gardeñes &
Latora, 2008; Ramezanpour, 2007], our aim was to
evaluate how SRW (and in particular, the effect
of different levels of switching) contributes to the
exploration of network models with well-known
topological properties. Different models which were
not necessarily lexico-conceptual architectures were
explored by a SRW and its performance was mea-
sured by the MFPT (detailed in Sec. 2.3). Going
back to the cognitive paradigm, retrieving plenty
of words in a semantic verbal fluency test not only
depends on the number of concepts that the sub-
ject knows, but also on an equilibrium between the
underlying semantic topology that organizes those
concepts and the frequency of switching [Troyer
et al., 1997]. For example, two different studies
[Boringa et al., 1982; Sepulcre et al., 2006] reported
that their respective groups of healthy participants
produced 30.7±7.9 and 28.15±7.32 animals during
90 sec. There are two remarkable aspects in these
figures. First, participants obviously knew many
more animals than those said and, second, there
is a high heterogeneity in the number of words.
Hence, even though all participants only named a
low fraction of the animals they knew, some of them
had much more success than others when retrieving
them.

2. A Markov Model of SRW

As introduced in the previous section, our approach
for a clustering step consists of a walker unaware
of the full network moving from one node to
any of its neighbors with no preferential gradi-
ents among neighbors. Such exploration task was
modeled by the well-known random-walker (RW).
Switching was implemented as a mechanism where

the walker moves to any other node following dif-
ferent probabilistic approaches. Summarizing, SRW
can be defined as a random-walker with the capa-
bility of rendering random shifts.

2.1. Markov chains

A finite Markov chain is a special type of stochastic
process which can be described as follows. Let

S = {s1, . . . , sr} (1)

be a finite set whose members are the states of
the system, which we label s1, . . . , sr. The pro-
cess moves through these states in a sequence of
steps. If at any time it is in state i, it moves to
a state j on the next step with some probability,
Π : S × S → MS×S , where MS×S is the set of
S × S matrices of non-negative entries where the
sum of every row is 1. These probabilities define a
square, r × r matrix, Π:

Π ≡ [pij ], (2)

which we call the matrix of transition probabilities.
The importance of matrix theory to Markov chains
comes from the fact that the ijth entry of the nth
power of Π, Πn = [p(n)

ij ] represents the probability
that the process will be in state j after n steps con-
sidering that it was started in state i. The study of a
general Markov chain can be reduced to the study
of two special types of chains. These are absorb-
ing chains and ergodic chains (also known as irre-
ducible). The former contain at least one absorbing
state, i.e. a state constituted by a proper subset
of the whole by which, once entered it cannot be
left, and furthermore, which is reachable from every
state in a finite number of steps. The latter are those
chains where it is possible to go from any state to
any other state in a finite number of steps and are
called regular chains when

(∃n < ∞) : (∀ i, j ≤ r)(∀N > n)(p(N)
ij > 0).

For regular chains, the ijth entry of Πn becomes
essentially independent of state i as n is larger. In
the case of regular chains, we can define a stationary
probability matrix [Snell, 1959] Π∞ as:

lim
n→∞Πn = Π∞. (3)

Note that for nonregular Markov processes this
limit might not exist. For instance Π =

(
0 1
1 0

)
.

The matrix Π∞ consists of a row probability
vector w which is repeated on each row. This vec-
tor w can be obtained as the only probability vector
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satisfying w = wΠ [Grinstead & Snell, 1952]. For
the case of regular Markov processes obtained from
random walks on graphs, this indicates that in the
long run, the probability to be in a node is indepen-
dent of the node where the process started.

2.2. Graph characterization

This section is devoted to the characterization of
the underlying object over which we apply our algo-
rithm of exploration, a graph. Beyond its main
features, we discuss the consequences of connected-
ness in order to clearly define the frameworks over
which the SRW algorithm can be defined. Finally,
we briefly define the graph models studied numeri-
cally in Sec. 3.

Let us suppose that our Markov chain is defined
by some graph topology. A graph G is defined by a
set of nodes, V ≡ {v1, . . . , vn}, and a set of links Γ ≡
{{vi, vj}, . . . , {vk, vl}}, Γ being a subset of V ×V . In
our approach, the graph is undirected and we avoid
the possibility that a node contains auto-loops or
that two links are connecting the same nodes. The
size of the graph is |V |, i.e. the cardinal of the set
of vertices. Its average connectivity is defined as:

〈k〉 ≡ 2|Γ|
|V | . (4)

The topology of our graph is completely described
by a symmetrical, |V | × |V | matrix, A(G) = [aij ],
the so-called adjacency matrix, whose elements are
defined as:

aij =
{

1 ↔ {vi, vj} ∈ Γ
0 otherwise.

(5)

The connectivity of the node vi, k(vi) is the num-
ber of links departing from vi and it can be easily
computed from the adjacency matrix as:

k(vi) =
∑

j≤|V |
aij. (6)

Following the characterization, we now define the
degree distribution, which is understood as the
probability that a randomly chosen node displays
a given connectivity. In this way, we define the ele-
ments of such a probability distribution, {p} as:

pi =
|(vj ∈ V ) : (k(vj) = i)|

|V | . (7)

The above defined measures are the identity
card of a given graph G. One could think that
it is enough because our main goal is to describe
and characterize an exploration algorithm over G.
However, specially in the models of random graphs,

we cannot be directly sure that our adjacency
matrix defines a fully connected graph, i.e. there
exists, with probability 1 a path from another vi to
any node vj. In deterministic graphs, we can solve
this problem by assuming, a priori, that our com-
binatorial object is fully connected. Furthermore,
we could agree that, when performing rewirings at
random, we impose the condition of connectedness.
The case of pure random graphs is a bit more com-
plicated. Indeed, a random graph is obtained by a
stochastic process of addition or removal of links
[Bollobas, 2001]. Thus, we need a criteria to ensure
that our graph is connected or, at least, to work over
the most representative component of the obtained
object. Full connectedness is hard to ensure in a
pure random graph. Instead, what we can find is a
giant connected component, GCC. Informally speak-
ing, we can imagine an algorithm spreading at ran-
dom links among a set of predefined nodes, the
so-called Erdös–Rényi graph process. The growing
graph displays, at the beginning, a myriad of small
clusters of a few nodes and, when we overcome
some threshold in the number of links we spread
at random, a component much bigger than the oth-
ers emerges, i.e. the GCC [Erdös & Rényi, 1960].
In this way, Molloy and Reed [1995] demonstrated
that, given a random graph with degree distribution
{p}, if ∑

k

k(k − 2)pk > 0 (8)

then, there exists, with high probability, a giant
connected component. The first condition we need
to assume is thus, that the studied graphs satisfy
inequality (8). Beyond this assumption, we impose
the following criteria when studying our model
networks:

(1) In a deterministic graph (for example, a
chain or a lattice) where we perform random
rewirings, we do not allow rewirings that break
the graph.

(2) If a graph is the result of an stochastic pro-
cess, the exploration algorithm is defined only
over the GCC (this could imply the whole set
of nodes).

(3) The adjacency matrix is the adjacency matrix
of the GCC. We remove the nodes that, in the
beginning, participated in the process of con-
struction of G but fell outside the GCC.

All the model graphs studied in this work satisfy
the above conditions.
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In order to obtain a useful comparative anal-
ysis, we built different networks, all of them with
|V | = 500 nodes and |Γ| = 2000 links. The results
were averaged after 100 instances per network
model (see Fig. 2). Let us briefly define the models
to be studied with our exploration algorithm.

2.2.1. Watts–Strogatz small-world
network

We built an annulus with 500 nodes in such a way
that every node is connected to eight different nodes

(2000 undirected links) [Watts & Strogatz, 1998].
Once the annulus was constructed, every link suf-
fered a random rewiring with connectivity p = 0.05.

2.2.2. Erdös–Rényi graph

Over a set fo 500 nodes we spread at random 2000
links, avoiding duplication and self-interaction. It
can be shown that the obtained graph displayed a
binomial degree distribution [Erdös & Rényi, 1960]:

pk =
(|V | − 1

k

)
πk(1 − π)|V |−k−1, (9)

(a) (b)

(c) (d)

Fig. 2. Visualization of small examples (|V | = 100) of the four network models analyzed here: (a) Small-world network.
(b) Random Erdös–Rényi network. (c) Random-modular network: here a network is partitioned into ten modules, each one
connecting to each other with a large probability, whereas a very small inter-module probability is used. (d) Scale-free network
obtained by preferential attachment. See Sec. 2.2 for a detailed description of each network model.
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π being the probability of two nodes being con-
nected. Its value corresponds to

π = |Γ|
(|V |

2

)−1

(10)

2.2.3. Random-modular

We built ten different components of 50 nodes
and 200 links, spread at random (as explained for
Erdös–Rényi graphs) among the 50 nodes of every
component. In this case, we ensure connectedness
of such components. Once the ten components are
constructed, every link suffers a random rewiring
with a node either from the same component or
not, with probability p = 0.05.

2.2.4. Preferential attachment

We provide a seed of nine connected nodes. Every
new node was connected to eight of the existing
nodes with probability proportional to the connec-
tivity of the existing nodes, i.e. suppose that, at
time t a new node vi comes in to the graph. At
this time step, the graph will display an adjacency
matrix A(t).

P(aij(t) = 1) =
k(vj)(t − 1)∑

vk∈At

k(vk)(t − 1)
, (11)

where

At = {(vk : ∃ l) : (akl(t) > 0)} (12)

This operation is repeated in an iterative fash-
ion (i.e. updating A) eight times per node. It can
be shown that, at the limit of a large number of
nodes the outcome of this algorithm generates a
graph whose degree distribution is a power law
[Barabasi & Albert, 1999]:

pk ∝ k−α, (13)

with α = 3. It is worth noting that such an
algorithm avoids the possibility of unconnected
components.

2.3. Random walk over a graph as
a Markov process

In this framework, the transition from node i to j
is just the probability that a random-walker starts
from some node i and reaches the node j, after some
steps. Consistently, the probability of being in vi as

we reach the node vj in a single step (i.e. pij) is:

pij =
aij

k(vi)
(14)

This is the general form for a Markov formaliza-
tion of a random-walker within a graph defined by
its adjacency matrix A. Throughout this work we
assume that our graphs define regular Markov pro-
cesses (see Sec. 2.1). Under the above definition of
Π, regularity is assured if and only if the graph is not
bipartite (i.e. it contains, at least, one loop contain-
ing an odd number of nodes). To see that bipartite
graphs are not regular, it is enough to notice that for
any pair of nodes (vi, vj) there are only either odd
or even paths joining them, but not both. Hence if
p
(n)
ij �= 0 then p

(n+1)
ij = 0 and therefore the process

cannot be regular.
Summarizing, despite the fact that connected-

ness ensures the process is ergodic,

(∀ vi, vj ∈ G)(∃n : p
(n)
ij �= 0)

it does not ensure regularity and therefore the
limn→∞ Πn might not exist. The existence of an odd
loop breaks such parity problem and enables Πn to
stabilize to a specific matrix of stationary probabil-
ities when n → ∞. Thus, we must impose another
assumption to our studied graphs: Our algorithm
works over nonbipartite graphs which satisfy the
criteria imposed in Sec. 2.2. It is straightforward to
observe that, if the assumption of regularity holds,
the above Markov process has a stationary state
with associated probabilities proportional to the
connectivity of the studied node [Noh & Rieger,
2004]:

p
(∞)
ij =

k(vj)
2|Γ| . (15)

From now on, we will refer to the transition matrix
above defined as Πcl, since it denotes the probabil-
ities of the movements related to clustering.

2.4. Switcher-random-walker

In the retrieval model introduced here, the matrix of
transition probabilities Πsrw is a linear combination
of the switching transition probabilities Πsw and the
clustering transition probabilities Πcl, as defined in
the above section. The Markov process is a switcher-
random-walker and the states represent the location
of such walker in the network.

The matrix Πsw = [psw
ij ] is ergodic and regular

since all entries are strictly greater than zero, and
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has equal rows, i.e. constant columns. The reason
is that the probability of reaching a node j through
switching is independent of the source node i. In
this way, we could consider that we define a scalar
field λ over the nodes of the graph:

psw
ij = λj . (16)

Consistently, ∑
j≤|V |

λj = 1. (17)

We can define this field in many different ways.
As the more representative, we revise several scalar
fields that can provide us interesting information
about the process:

λj =




1
|V |

k(vj)∑
i≤|V |

k(vi)

K − k(vj) + 1∑
i≤|V |

k(vi)

(18)

In the first and most simple case, switching to any
other node is a random uniform process, and we
refer to this process as uniformly distributed switch-
ing. The second case corresponds to the situation
where the probability to reach a given node through
switching is proportional to its connectivity, which
we call positive degree gradient switching. The last
one assumes that K is max{k(vi)} and corresponds
to the situation where the switcher jumps with
more probability to weakly connected nodes, and
we refer to it as negative degree gradient switching.
These three variants of switching were studied when
combined with a random-walker within the above
graph topologies (see Fig. 3). They were denoted
by SRW=, SRW+ and SRW− respectively.

The matrix Πcl = [pcl
ij] defined in the above

section is ergodic and regular but restricted to the
transitions allowed by the adjacency matrix A of
the network of study. We modeled as equi-probable
the transitions among linked nodes of the network.
Hence the probability of moving from a node vi to a
node vj through clustering for a given graph G with
an adjacency matrix AG = [aij ], is

pcl
ij =

aij

k(vi)
. (19)

Thus, Πsrw = [psrw
ij ] is defined as:

Πsrw = qΠsw + (1 − q)Πcl (0 ≤ q ≤ 1), (20)

where q is the probability of switching. Consistently,
the entries of Πsrw are given by:

psrw
ij = qpsw

ij + (1 − q)pcl
ij, 0 ≤ q ≤ 1. (21)

We observed that Πsrw is also ergodic and reg-
ular. This follows from the fact that Πsw already
has all entries strictly greater than zero, and thus
Πsrw will have all entries greater than zero for any
q > 0. For the case of q = 0, Πsrw is just Πcl which
we assumed to be regular.

Among other interesting descriptive random
variables that can be evaluated for regular chains,
the matrix of the mean first passage time (MFPT)
is a matrix 〈T 〉 = [〈tij〉], crucial for measuring the
retrieval or exploratory performance of any stochas-
tic strategy; the MFPT needed to go from a node i
to a node j is denoted by 〈tij〉 [Noh & Rieger, 2004]
and represents the time (in step units) required to
reach state j for the first time starting from state
i. It is important to note that 〈tij〉 is not necessar-
ily equal to 〈tji〉, i.e. it might happen that the time
required to go from state i to state j is different to
the time required to go from state j to state i.

In order to obtain the analytical expression of
MFPT, we must define first a fundamental matrix
Z [Grinstead & Snell, 1952] which is given by

Z = (I − Πsrw + Π∞
srw)−1, (22)

where

Π∞
srw = lim

n→∞(Πsrw)n, (23)

and I is the identity matrix of size |V | × |V |.
In this case the entry zij of Z can be understood

as a measure of the deviations of the ijth entry of
(Πsrw)n from their limiting probabilities w, which,
as commented in Sec. 2.1, is any of the equal rows
of Π∞

srw. From Z and w we can obtain the analyti-
cal derivation of 〈T 〉 = [〈tij〉] (for more details see
[Grinstead & Snell, 1952]):

〈tij〉 =
zjj − zij

wj
(24)

Finally, we denote as 〈MFPT〉G the averaged
value of all entries 〈tij〉 for a switcher random walker
exploring a network G. Since 〈T 〉 it is not necessar-
ily symmetrical, we must take into account all the
entries outside the main diagonal. The main diago-
nal was not taken into account, since it represents
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Fig. 3. Exploration performance based on the 〈MFPT〉G [see Eq. (25)] on four graph models for the three Markovian variants
of SRW [see Eq. (18) for implementation details of each variant of switching]. Parameter q stands for probability of switching
[see Eq. (20)]. (a) SRW=, SRW that contains a uniformly distributed switching. (b) SRW+, SRW that contains a switching
with positive degree gradient. (c) SRW−, SRW that contains a switching with negative degree gradient.

the returning time, which we do not consider as a
part of the exploration of the net. Thus,

〈MFPT〉G =
1

2
(|V |

2

) ∑
i

∑
j �=i

〈tij〉. (25)

This measure provides a general evaluation of how
reachable is, on average, any node from any other
node in a specific network using a switcher random-
walker. It is interesting to notice that such measure
has an upper bound which is precisely the size of
the net. Indeed, let us suppose we have a clique of
size m, i.e. a graph, G(V,Γ), where |V | equals m
and every node vi is connected to itself and to all
m − 1 remaining nodes. It corresponds to the case
where the probability of switching is 1. Let X be a
random variable whose outcomes are vj such that,
∀ vj ∈ V :

P(X = vj) =
1
m

. (26)

We define a stochastic process, namely, the
realizations of X through different time steps,
X(1),X(2), . . . ,X(t). Let us define another random
variable, Y , namely the number of realizations of X
needed to ensure that there has been one realization
of X equal to vj :

Y = min
t
{X(t) = vj} (27)

Clearly, and due to the symmetry of our exper-
iment, all the nodes behave in the same way.
Furthermore,

〈Y 〉 = m (28)

i.e. we need, on average m realizations of X in order
to obtain, at least, one realization X = vj , ∀ vj ∈ V .
We observe that the above random experiment is
exactly a random switching over a graph contain-
ing m nodes, and that 〈Y 〉 is the 〈MFPT〉 of this
process. Let us suppose we have a 〈MFPT〉 < m.
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This implies that, on average

(∀ vj)P(X = vj) >
1
m

(29)

which is a contradiction, since the graph has m
nodes. Thus, for a given graph G(V,Γ):

〈MFPT〉G ≥ |V |. (30)

This value represents a horizontal asymptote in
the model of SRW as q increases, and it is clearly
defined in our model experiments (see Fig. 3).

3. Results and Discussion

Our main result was that SRW exploration, a
cognitive inspired strategy that combines random-
walking with switching for random exploration of
networks, decreased the 〈MFPT〉 of all models for
all SRW variants. This means that, on average, the
number of steps needed to travel between every pair
of nodes decreases and thus the overall exploration
abilities of a SRW within the networks improve with
respect to RW.

Regarding SRW= [Fig. 3(a)], exploration per-
formance of random-modular and small-world net-
works severely improves, overtaking scale-free at
q = 0.1. Moreover, at q = 0.3 all the networks but
scale-free converged, leading to a remarkable sce-
nario where modularity and high clustering coeffi-
cients are not topological handicaps for an efficient
information retrieval.

Switching in SRW+ severely improves 〈MFPT〉
in modular and small-world networks while hardly
decreases in scale-free and random. The reason is
that a random-walker on both kind of networks
already shows a gradient to visit highly connected
nodes [Noh & Rieger, 2004], and a positive-degree
switching supported rather than compensated this
effect due to redundancy on hubs Fig. 3(b).

In SRW−, intermediate values of q (around 0.6
for all but scale-free models) showed optimal per-
formance with a similar effect to the one produced
by SRW=. However, it only partially succeeded in
compensating the already commented natural RW
gradient for hubs [Fig. 3(c)]. Interestingly, those
q values close to 1 produced an inverse situation
where hubs are so unlikely to be reached that the
overall exploration performance decreased for all
the models but dramatically for scale-free model,
where the degree heterogeneity is specially high. On
the contrary, small-world model showed a very sim-
ilar performance when explored by any of the three
SRW variants. The reason is that in this model,

the degree distribution is very homogeneous, and
thus different degree gradients of switching pro-
duced very little differences.

The approximate convergence of the explo-
ration efficiency (for most of the topologies when
using SRW= or SRW− with a moderate switch-
ing rate) allows a system to organize information
or to evolve without compromising exploration and
retrieval efficiency. In this sense, semantic memory
might be organizing information in a strongly mod-
ular or locally clustered way without compromising
retrieval performance of concepts. In a more general
perspective, the addition of a switching mechanism
and its interaction with random-walker dynamics
opens a new framework to understand processes
related to information storage and retrieval. Indeed,
switching not only mitigates exploration deficits of
certain network topologies but might also provide
certain robustness to the system. For instance, the
rewired links (known as short-cuts) in both small-
world and random-modular models contribute to
facilitate access to different regions of the net-
work. Those short-cuts might compensate a switch-
ing impairment or dysfunction and vice versa, i.e.
switching would ensure an accurate exploration of
the network even though a targeted attack removed
those short-cuts permanently.

Similar mechanisms to switching have been
observed in the context of information networks.
In particular, the iterative algorithm PageRank
estimates a probability distribution used to repre-
sent the likelihood that a person randomly click-
ing on links will arrive at any particular page for a
hyperlinked set of documents (e.g. the world-wide-
web) [Brin & Page, 1998]. The user is supposed
to be a random-surfer who begins at a random
web page and keeps clicking on links but never hit-
ting back. The damping-factor is an additional item
that includes the fact that the user can get bored
and start on another random page. The combina-
tion of these two processes is used by the Google
Internet search engine to estimate the relevance
of different links (PageRank values). Interestingly,
while the objective (rank link targets) and the
framework (hyperlinked documents, i.e. directed
graphs) are not the same, the cognitive-inspired
SRW described here and PageRank algorithm com-
bine random-walks restricted to a topology with an
extra-topological mechanism in order to evaluate
tasks in complex networks.

The model proposed here could have implica-
tions in other systems that usually have a conflict
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between organization and retrieval or spreading effi-
ciency. It will be a topic of further studies in other
phenomena unrelated to cognitive processes such
as infection epidemiology, information spreading or
energy landscapes.
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