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Abstract

In a previous paper [10] we explored the no-
tion of coherent fuzzy consequence operator.
It is well-known that the operator induced
by a fuzzy preorder through Zadeh’s compo-
sitional rule is always a coherent fuzzy con-
sequence operator. It is also known that
the relation induced by a fuzzy consequence
operator is a fuzzy preorder if such opera-
tor is coherent [7]. Fuzzy closing operators
of mathematical morphology can be consid-
ered as fuzzy consequence operators. In [12]
we showed that they are coherent operators.
The aim of this paper is to analyze the rela-
tions between both classes of operators and
the class of all fuzzy preorders in order to
translate well know properties from Approxi-
mate Reasoning to the one of Image Process-
ing.

Keywords: Fuzzy Preorder, Fuzzy Conse-
quence Operator, Fuzzy Morphological Clos-
ing Operator, Coherent Operators, Approxi-
mate Reasoning, Image Processing.

1 INTRODUCTION

Consequence Operators in classical logic were intro-
duced by A. Tarski in 1930 [20]. According to Tarski,
a logic is just a set of propositions with a consequence
operator. The relationship between consequence ope-
rators and preorders is well known [5].

Concepts of Fuzzy Preorder and Fuzzy Consequence
Operator (FCO for short) are essential on fuzzy logic.
These notions have been defined as a natural genera-
lization of the classical ones:

Given a non-empty universal set X which will repre-
sent a set of propositions and a t-norm ∗, a fuzzy (bi-
nary) relation R on X (fuzzy subset of X×X) is called
a fuzzy ∗-preorder if it satisfies:

(R1) R(x, x) = 1 ∀ x ∈ X (reflexivity)

(R2) R(x, z) ≥ R(x, y) ∗ R(y, z) ∀ x, y, z ∈ X (∗-
transitivity).

If R is also symmetric, this is, R(x, y) = R(y, x) for
all x, y ∈ X then it is called a fuzzy ∗-similarity,
fuzzy ∗-indistinguishability or, equivalently, fuzzy ∗-
equivalence. If R is only reflexive and symmetric, we
will say that it is a fuzzy tolerance.

Fix a complete lattice L which will be the range of
the memberships of the fuzzy subsets of X, J. Pavelka
introduced in 1979 the concept of FCO on X in fuzzy
logic [18] extending the concept of consequence ope-
rator in Tarski’s sense in a natural way.

A function C : LX −→ LX is a FCO on X if it satisfies:

(C1) µ ⊂ C(µ) for all fuzzy subset µ ∈ LX (inclusion)

(C2) µ1 ⊂ µ2 =⇒ C(µ1) ⊂ C(µ2) for all µ1, µ2

∈ LX (monotony)

(C3) C(C(µ)) ⊂ C(µ) for all µ ∈ LX (idempotence)

Notice that, under the inclusion axiom, (C3) may be
written equivalently as (C3’) C(C(µ)) = C(µ) ∀ µ ∈
LX .

These operators, also called closure operators, have
been studied extensively [1],[2],[8],[12],[13],[24]. Du-
ring the last and current decades, these operators
have been also studied in the context of the fuzzy
logic taking the chain L = [0, 1] as a special case
[6],[7],[10],[11],[15].

In 1991, J.L. Castro and E. Trillas proved [7] the fo-
llowing result: If R is a fuzzy ∗-preorder then the
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operator C∗R between fuzzy subsets of X given by the
max-∗ Zadeh’s compositional rule

C∗R(µ) = µ ◦∗ R (1)

is a fuzzy consequence operator (induced by R), where

(µ ◦∗ R)(x) = sup
w∈X

{
µ(w) ∗R(w, x)

}
(2)

We proved [10] that the converse of the previous result
is also true: R is a ∗-preorder if and only if C∗R is a
FCO. Thus the only possibility to obtain FCOs from
relations using Zadeh’s max-∗ compositional rule is to
work with ∗-preorders.

For the inverse process (inducing fuzzy preorders from
FCOs), J.L. Castro and E. Trillas added the coheren-
ce axiom to the FCO concept [6]. A FCO C is called
∗-coherent if

µ(a) ∗ C(ϕa)(x) ≤ C(µ)(x) (3)

for all µ ∈ [0, 1]X and for all (a, x) ∈ X × X, where
ϕa(t) = ϕ{a}(t) is the crisp membership of the single-
ton {a}.

It is proven [7] that if C is a ∗-coherent FCO then the
relation defined by

RC(x, y) = C(ϕx)(y) (4)

is a fuzzy ∗-preorder (induced by C). It is also proven
that the operator C∗R is ∗-coherent.

It is easy to extend the notion of coherence to operators
C : LX −→ LX between fuzzy subsets in LX . This is:
a FCO C is called ∗-coherent if µ(a) ∗ C(ϕa)(x) ≤
C(µ)(x) for all µ ∈ LX and for all (a, x) ∈ X × X,

where ϕa(t) =

{
1 if t = a

0 if t 6= a
, being in this case 1 and

0 the greatest and least element of the lattice L, res-
pectively. Then, all the previous results hold.

On the other hand, the classical morphological ope-
rators of image processing have been introduced by
G. Matheron an J. Serra in [16],[17],[21]. These op-
erators have been studied recently, see for instance
[12],[14],[23]. In [14] they are studied in a new con-
text: obtaining relevant information in fuzzy relational
systems.

In this context, the most used morphological opera-
tors are erosion, dilation, opening and closing that are
given respectively by εR(µ) = Rop ¢ µ, δR(µ) = R ◦µ,
αR(µ) = R ◦ (Rop ¢ µ) and βR(µ) = R ¢ (Rop ◦ µ),
where R is the relation acting as structurant element

and µ is in the class of all fuzzy subsets of the univer-
sal set X or X ×X. Rop denotes the inverse relation
of R, Rop(x, y) = R(y, x) and the operators ◦, ¢ are
defined as usual:

(R ◦ µ)(x) = sup
w∈X

{
R(x,w) ∗ µ(w)

}
, (R ¢ µ)(x) =

inf
w∈X

{
R(x,w) Ã µ(w)

}
for some t-norm ∗ and for

some implication operator Ã.

Notice that the operator ◦ and possibly the operators
¢ and Ã depend on the t-norm ∗. However, when
there is no confusion, in order to alleviate the notation
we omit the symbol ∗.
From now on, ∗ will be a left-continuous t-norm, that
is, α∗ (sup M) = sup(α∗M) for all α ∈ L, M ⊂ L and
Ã∗ will denote the residuated implication induced by
the t-norm ∗: α Ã∗ β = sup{w ∈ L/α ∗ w ≤ β}. It is
also called the pseudoinverse application of ∗.

Both in the crisp and in the fuzzy cases, opening and
closing operators with an isotropic structuring element
are used in image processing to eliminate specific im-
age details smaller than the structuring element. The
global shape of the objects is not distorted.

In particular, a closing operator connects objects that
are close to each other, fills up small holes and smooths
the object outline by filling up narrow gulfs. Meanings
of near, small and narrow are related to the size and
the shape of the structuring element.

Figure 1 ([22]) shows an example where a set is trans-
formed by a closing operator through a disk as struc-
turing element.

Figure 1: Effect of a closing operator on a non-smooth
object

In this way, the concept of fuzzy closing operator ϕ∗R
induced by a fuzzy relation is relevant in fuzzy mathe-
matical morphology, defined in [12] as follows. For any
fuzzy relation R on X,

ϕ∗R(µ) = Rop ¢Ã∗ (R ◦∗ µ) (5)

where R ◦∗ µ is given by

(R ◦∗ µ)(x) = sup
w∈X

{
R(x, w) ∗ µ(w)

}
and
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(R ¢Ã∗ µ)(x) = inf
w∈X

{R(x,w) Ã∗ µ(w)}.

It is well-know that ϕ∗R is a closure operator, that is,
a fuzzy consequence operator.

In Section 2, we recall some properties which are
proven in [12].

In Section 3, we show some results about the relation-
ship between fuzzy preorders and their induced conse-
quence and closing morphological fuzzy operators.

2 FUZZY CLOSING
MORPHOLOGICAL OPERATORS
AS FUZZY CONSEQUENCE
OPERATORS

In [12] we proved that, for all t-norm ∗, the fuzzy
closing operator induced by a relation is always a ∗-
coherent operator acting as a fuzzy consequence ope-
rator. More precisely, we proved the following result.

Theorem 1.- ([12]) Let R be any fuzzy relation on
X. Then the fuzzy closing operator ϕ∗R : LX −→ LX

induced by R by means of (5) is a ∗-coherent fuzzy
consequence operator.

Since the relation induced by a coherent fuzzy conse-
quence operator is a preorder, it immediately follows
that the relation induced by the fuzzy closing operator
ϕ∗R is a preorder:

Corollary 1.- ([12]) Let R be a fuzzy relation on X.
Then the fuzzy relation induced by the operator ϕ∗R by
means of (4) is a ∗-preorder.

We also proved the following characterization of such
induced relation from which other properties can be
easily deduced.

Lemma 1.- ([12]) Let R be any fuzzy relation on X
and put C = ϕ∗R. Then the ∗-preorder induced by C
by means of (4), RC is such that

RC = (Rop ¢Ã∗ R)op (6)

Recall that the ¢Ã∗ composition for two relations
R and S on X is defined by (R ¢Ã∗ S)(x, y) =
inf

w∈X
{R(x,w) Ã∗ S(w, y)}.

From the previous lemma it follows immediately that
(Rop ¢Ã∗ R)op is always a ∗-transitive relation, then
Rop ¢Ã∗ R is also ∗-transtitive. This result about the

transitivity of the relation R does not involve the com-
position operator ◦, even though transitivity is defined
using composition.

The following characterization about the transitivity
of a relation R does not involve composition either.

Theorem 2.- ([12]) Let R be any fuzzy relation on X.
Then R is ∗-transitive if and only if R ≤ Rop ¢Ã∗ R.

Accordingly, we have the following characterization of
fuzzy preorders without the operator ◦:

Corollary 2.- ([12]) Let R be any fuzzy relation on X.
Then R is an ∗-preorder if and only if R = Rop¢Ã∗R,
this is, R ∗-preorder if and only if RC = Rop.

3 FUZZY PREORDERS AND
THEIR INDUCED
CONSEQUENCE AND CLOSING
MORPHOLOGICAL FUZZY
OPERATORS

From now on, we make use of the following notation
introduced in [11].

Γ∗ will represent the class of all fuzzy preorders, Ω will
represents the class of all fuzzy consequence operators,
Ω̃∗ the subclass of all ∗-coherent fuzzy consequence
operators and Ω∗p the subclass of all fuzzy consequence
operators induced by a ∗-preorder by means of (1), this
is, Ω∗p =

{
C ∈ Ω | ∃R ∈ Γ∗ , C = C∗R

}
.

θ∗ : Γ∗ → Ω is the function such that for each ∗-
preorder R, θ∗(R) = C∗R given by means of (1) and
θ̃ : Ω̃∗ → Γ∗ is the function such that for each ∗-
coherent fuzzy consequence operator C, θ̃(C) = RC

given by means of (4). Notice that function θ̃ does not
depend of the t-norm ∗.

Here are some elementary properties of these families
and functions.

It is easy to prove that θ∗ is one to one. Moreover for
each fuzzy relation R, RC∗R is exactly the relation R,
in other words, θ̃ ◦ θ∗ is the identity mapping on Γ∗.

In consequence, if C ∈ Ω∗p, there exists a unique R ∈
Γ∗ such that θ∗(R) = C, then θ̃ ◦ θ∗(R) = R and
θ∗◦ θ̃(C) = (θ∗◦ θ̃)◦θ∗(R) = θ∗◦(θ̃◦θ∗)(R) = θ∗(R) =
C. Conversely, if θ∗ ◦ θ̃(C) = C, C is the image of the
fuzzy relation θ̃(C) by the mapping θ∗ and C ∈ Ω∗p.
Therefore, Ω∗p =

{
C ∈ Ω | θ∗ ◦ θ̃(C) = C

}
.

Now we will prove the following lemma in order to ob-
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tain a characterization of ∗-preorders which involves
fuzzy closing morphological operators that are induced
by a ∗-preorder as fuzzy consequence operators in
Approximate Reasoning by means of (1).

Lemma 2.- Let C be any ∗-coherent operator (satis-
fying (3), not necessarily fuzzy consequence operator).
Then θ∗ ◦ θ̃(C) ⊂ C.

Proof.- If C satisfies (3):

θ∗ ◦ θ̃(C)(µ)(x) = C∗
θ̃(C)

(µ)(x) =

sup
w∈X

{
µ(w) ∗ θ̃(C)(w, x)

}
=

sup
w∈X

{
µ(w) ∗RC(w, x)

}
=

sup
w∈X

{
µ(w) ∗ C(ϕw)(x)

} ≤

sup
w∈X

{
C(µ)(x)} = C(µ)(x)

Therefore θ∗◦θ̃(C) ⊂ C. ¤

Theorem 3.- Let R be any fuzzy relation. If R is a
∗-preorder then ϕ∗R ∈ Ω∗p, this is, ϕ∗R is induced by a
∗-preorder by means of (1).

Proof.- Assume that R is ∗-preorder and prove that
θ∗ ◦ θ̃(ϕ∗R) = ϕ∗R. From Theorem 1, ϕ∗R is a ∗-coherent
operator, then θ∗ ◦ θ̃(ϕ∗R) ⊂ ϕ∗R by Lemma 2.

On the other hand,

ϕ∗R(µ)(x) = inf
w∈X

{R(w, x) Ã∗ C∗Rop(µ)(w)} ≤

R(x, x) Ã∗ C∗Rop(µ)(x) = 1 Ã∗ C∗Rop(µ)(x) =

C∗Rop(µ)(x)

From Corollary 2, if R ∗-preorder then

RC = θ̃(ϕ∗R) = Rop

Thus
ϕ∗R ⊂ C∗Rop = θ∗(Rop) =

θ∗
(
θ̃(ϕ∗R)

)
= θ∗ ◦ θ̃(ϕ∗R) ¤

Notice that if R is a ∗-preorder then ϕ∗R ∈ Ω∗p and
there exists a ∗-preorder S such that ϕ∗R = C∗S . Thus

θ̃(ϕ∗R) = θ̃(C∗S) = θ̃ ◦ θ∗(S) = S

and
θ∗ ◦ θ̃(ϕ∗R) = θ∗(S)

As θ∗ is one to one

θ̃(ϕ∗R) = S

that is
RC = S

From Corollary 2, RC = Rop and S = Rop.

From this, the following corollary is straightforward.

Corollary 3.- Let R be any fuzzy relation. If R is a
∗-preorder then ϕ∗R = C∗Rop .

Notice that, for an equivalence relation R, it is enough
to consider in Corollary 3, Rop = R by symmetry to
obtain the following result.

Corollary 4.- Let R be any fuzzy relation. If R is a
∗-equivalence then ϕ∗R = C∗R.

Finally, we show two properties for relations which are
not transitive.

If R is only reflexive:

Theorem 4.- Let R be any fuzzy relation. If R is
reflexive then ϕ∗R ≤ C∗Rop .

Proof.- If R is reflexive then

ϕ∗R(µ)(x) = inf
t∈X

{
R(t, x) Ã∗ sup

w∈X
{R(t, w) ∗ µ(w)}} ≤

R(x, x) Ã∗ sup
w∈X

{R(x,w) ∗ µ(w)}

By reflexivity

ϕ∗R(µ)(x) ≤ 1 Ã∗ sup
w∈X

{R(x, w) ∗ µ(w)} =

sup
w∈X

{µ(w) ∗R(x,w)} = C∗Rop(µ)(x) ¤

If R is a tolerance:

Corollary 5.- Let R be any fuzzy relation. If R is
reflexive and symmetric then ϕ∗R ≤ C∗R.

4 CONCLUSIONS AND FUTURE
WORKS

In [12], we have connected the class of fuzzy conse-
quence operators in the context of approximate rea-
soning with the class of fuzzy closing operators used
in image processing acting as filters.

We do not know of any previous relationship between
both classes in the literature apart that both are clo-
sure operators. Nevertheless, an interesting relation-
ship between several fuzzy mathematical morpholo-
gies, approximate reasoning and spatial reasoning is
established [3],[4].
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In this paper, we have proved some properties that
connects both structures with the class of all fuzzy
preorders.

More precisely, in Theorem 3 we have shown that if
R is a preorder then the fuzzy closing morphological
operator induced by R by means of (5) is also induced
by R as fuzzy consequence operator by means of (1).
In fact, we have proved that if R is ∗ preorder then
ϕ∗R = C∗Rop .

From this, we have shown in Corollary 4 that
for equivalence relations, the induced fuzzy closing
morphological operator coincides with induced fuzzy
consequence operator, this is, ϕ∗R = C∗R.

In future works we will use the connection established
between both classes of operators and the class of pre-
orders to translate well known properties from the field
of approximate reasoning to the one of fuzzy relational
systems. In particular we will explore its applications
to image processing.
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fuzzy, pp. 125-128, 2004.
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