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Abstract. We present new experimental results on the quenching dynamics of
an extended thermo-convective system (a network array of 100 convective oscil-
lators) through a secondary bifurcation. The topology of the new coherent struc-
tures which are fronts (domain walls), when this secondary bifurcation is crossed
upwards from a basic stationary multicellular pattern towards a propagative pat-
tern, allows us to characterize a freezing dynamics related to the Kibble-Zurek
mechanism (KZM). This mechanism defines a correlation length ξ ∼ µσ when the
threshold has been crossed at a quench rate µ = dǫ

dt
|ǫ=0 sufficiently large to freeze

almost instantaneously the phase transition front. This study concerns several
sequences of quenches where convective oscillators become differently correlated
depending on µ. Spatio-temporal correlation analysis will allow us to determine
the behavior of the KZM from the front dynamics. The novelty of these results is
that the front dynamics is expected to show the freezing-out dynamics beyond the
threshold, and therefore it will provide the healing length of the system depending
on the strength of the quench rate. Furthermore, in our system the effect of res-
onant nonlinearities pins the front and diminishes its fluctuations as we increase
the quench rate.
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1. Introduction

The Kibble-Zurek mechanism (KZM) [7, 8] is applied to the out-of-equilibrium
dynamics and phase transitions of condensed matter physics as well as to
the very first instants after the Big-Bang. The KZM predicts freezing of
the correlation length in systems with global symmetry in quenches based on
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causal arguments. Thus, similarly to the rapid cooling that took place in the
Big-Bang, the distribution of defects in rapid phase transitions obey the same
Physics as galaxies throughout the Universe. According to this parallelism, the
distribution of galaxies and other cosmic objects represent a fossil discovery of
an early Universe because it is expected to keep the freezing-out dynamics of
those firsts instants. This is what we expect from the fluctuating fronts that
are defined in our system by the critical modes of a secondary bifurcation.
The Zurek prediction, which was initially derived for a second-order phase
transition, determines the healing length in the course of a symmetry breaking
transition so that ξ ∼ τσ

Q (with σ < 0), where τQ is the “quench time” defined

as τQ = µ−1. Also, the relaxation time follows τ ∼ τ
η
Q (with η < 0). In

a quench, the dynamics of the system is far from the adiabatic evolution.
In consequence, fluctuations may become frozen if the system is not able to
readjust to the instantaneous control parameter value. Regarding a first-order
phase transition (discrete symmetry breaking transition), Rajantie [9] holds
that for fast quenches this type of transitions might be responsible for a very
inhomogeneous Universe although the behavior of the correlation length at
quenches is not completely understood in experiments and simulations.

Cosmology in the laboratory has become an intriguishing subject since
first attempts suggested by Zurek were tried on cooling helium 4 systems.
We find experimental evidence on the KZM in other systems like nonlinear
optical systems [4] and Bénard-Marangoni conduction-convection transition
in a cylindrical cell [5, 6]. Nevertheless, these experiments have always taken
primary bifurcations into account. Here, we show the quenching dynamics in
a secondary bifurcation from a stationary multicellular pattern (ST) towards
a oscillatory pattern throughout the presence of domains of traveling waves
(TW) and a mixed pattern of counter-oscillating waves (ALT) over ST.

2. Front dynamics at quenches

We study the quench dynamics of a dissipative system at the threshold of
a secondary bifurcation. The convective system is a rectangular fluid layer
(Silicone oil with a kinematic viscosity of 5 cSt) with a localized heating along
a line. For a fixed depth of the fluid layer, each characteristic pattern of the
stability diagram [1, 2] is obtained by controlling the heating temperature or
control parameter ǫ. As the temperature is increased, the system breaks more
symmetries and new critical modes take part in the spatiotemporal Fourier
spectra. We have focused on the secondary bifurcation that takes place from
a stationary multicellular pattern (ST) with wavelength λs which consists of
an array of 100 convective cells. When the critical point is crossed upwards in a
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Figure 1: Evolution of the control parameter T for a maximum and a minimum
quench rate µ. The horizontal red line defines the threshold in adiabatic
conditions. The vertical dashed line represents the approximate transition
time.

quench by increasing the temperature of the system, a 1D-front is formed. This
front connects the previous ST pattern with a new mixed pattern consisting
of highly unstable domains of traveling waves and mostly domains of counter-
propagative waves with wavelengths λv± ≈ 2λs. More detailed information
about the bifurcations of this system can be found in Ref. [1, 2], and from the
point of view of phase synchronization transitions in Networks see Ref. [3].

In order to obtain the reported results, we set our control parameters near
the codimension-2 point at a fixed depth d = 7.5 mm, where the system bi-
furcates from a multicellular pattern towards the oscillatory pattern described
above. For depths d > 7.5 mm , the system bifurcates supercritically from
a homogeneous state towards traveling waves. This secondary bifurcation is
weakly subcritical when it is crossed quasi-statically with a subcriticality of
ǫ ≈ −0.02 [1].

When the convective array of cells is quenched towards the new pattern
by crossing the adiabatic threshold (at 29.5 ◦Celsius) with different quench
intensities, a front dynamics is expected to show the freezing-out dynamics
that takes place near the threshold. In Fig. 1 we show two different quench
rates, for a smooth crossover (µmin) and for a fast one (µmax).

The front profile is obtained from demodulation techniques by selecting
the critical propagative modes Mv±. By measuring the degree of correlation
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Figure 2: Inverse of the correlation length ξ vs the quench rate µ for different
sequences of measurements. The dashed line is a guide to the eye.

of these fronts for different sequences, we are able to determine the behavior of
the freezing mechanism for different quench intensities (see Fig. 2). Thus, the
inverse of the correlation length ξ−1 is given by the deviation of the front. Our
results show how an initial fluctuating 1D-front becomes more homogeneous
as we increase the quench intensity. The stationary mode which defines the
previous pattern (ST), becomes stronger above the critical point as we increase
µ due to the increasing nonlinear resonance with the critical traveling modes
Mv±.

3. Conclusions

Although weak subcriticality sets the necessary condition for a freezing-out
dynamics, as we crossover a secondary bifurcation we find out an unexpected
critical behavior in regard of the standard Kibble-Zurek prediction. Concern-
ing the interest of these results, we are planning to look for further evidences
and thus, more experimental and analytical effort is going to be developed
soon.
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