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Abstract

We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier
liquid. The viscoelastic properties is given by the Oldroyd model. We obtain explicit expressions for
the convective thresholds in terms of the parameters of the system in the case of idealized boundary
conditions. We also calculate numerically the convective thresholds for the case of realistic boundary
conditions. The effect of the Kelvin force and of the rheology on instability thresholds for a diluted
suspensions are emphasized.
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1. Introduction

Ferrofluids are magnetic fluids formed by a
stable colloidal suspension of magnetic nanoparti-
cles dispersed in a carrier liquid. Without an ap-
plied external magnetic field the orientations of
the magnetic moments of the particles are random
resulting in a vanishing macroscopic magnetiza-
tion (magnetic disorder). An external magnetic
field, however, easily orients the particle magnetic
moments and a large (induced) magnetization is
obtained. There are two main features that dis-
tinguish ferrofluids from ordinary fluids, the po-
larization force and the body couple. In the last
decades much efforts have been dedicated to the
study the phenomenon of convective mechanism
in ferrofluids. In addition, heat transfer through
magnetic fluids, in particular, have been one of
the leading area of scientific study due to its tech-
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nological applications [1]. The ferrofluid convec-
tion has application in high-power capacity trans-
former system where the ferrofluid is used as a ma-
terial in the core as well as a coolant in the trans-
former. To activate convective cooling, knowledge
of concentration gradient, which will induce con-
vection, is required. An important application of
ferrofluids lies in the biomedicine area where the
carrier liquid is blood [2–6] which is known to have
also special rheological proprieties [7–9]. In addi-
tion, when a magnetic field is applied, the fer-
rofluid can exhibit additional rheological proper-
ties such as magneto-viscosity, adhesion proper-
ties, non-Newtonian behavior, among others [10–
20]. Hence, a detailed study of viscoelastic mag-
netic fluids is quite important and in order.

The first continuum description of magnetic
fluids was given by Neuringer and Rosensweig
[21]. Later, Finlayson [22] studied the convective
instability of a magnetic fluid for a fluid layer
heated from below in the presence of a uniform
vertical magnetic field. He discussed the cases of
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both, shear free and rigid horizontal boundaries
using the linear stability method. Gotoh and Ya-
mada [23] carried out a similar study by assum-
ing the fluid to be confined between two mag-
netic pole pieces. A weakly nonlinear analysis in
a strong external field was considered by Blenner-
hassett et al. [24]. The convective instability for a
rotating layer in a magnetic fluid has been stud-
ied by Gupta and Gupta [25] and by Venkatasub-
ramanian and Kaloni [26]. An amplitude equa-
tion for the stationary convection with idealized
boundary condition was derived in Ref.[27]. The
Küppers-Lortz instability for the case of a ro-
tating magnetic fluid was formulated by Auern-
hammer and Brand [28]. Ryskin and Pleiner [29],
using nonequilibrium thermodynamics, have de-
rived a complete set of equations to describe fer-
rofluids in an external magnetic field. This de-
scription is made in terms of a binary mixture,
where the magnetophoretic effect, as well as mag-
netic stresses, have been taken into account in the
static and dynamic parts of the ferrofluid equa-
tions. When the magnetophoretic effect can be
neglected, we have analyzed the thermal convec-
tion for rotating ferrofluids. For idealized bound-
ary condition for the typical conductive state in
the stationary case an analytical expression was
found for the Rayleigh number as function of con-
trol parameters [30]. Recently, the weakly nonlin-
ear analysis for stationary convection in a rotating
magnetic binary mixture was studied [31]. Other
effects, such as the buoyancy-surface tension ef-
fects, nonuniform thermal gradients, magnetiza-
tion constitutive equations, etc., have also been
studied in Refs. [32–38].

Viscoelastic properties of fluids can be de-
scribed by a constitutive equation, which relates
the stress and strain rate tensors. Finding this
relation, which should generalize the linear de-
pendence characteristic of Newtonian fluids, is the
main purpose of the science of Rheology. The sim-
plest constitutive equation capable of describing
realistically the viscoelastic properties is given by
the so-called Oldroyd model [39]. In this model,
the stress tensor is decomposed into both a poly-
meric contribution and a solvent contribution.
Studies of convection in such fluids have been per-

formed by various authors for different cases, ei-
ther with free-free or rigid-rigid boundary condi-
tions [40–55]. It has been found that, besides the
usual stationary convection, oscillatory states can
also be obtained at onset. Which type of convec-
tion - stationary or oscillatory appears - first will
depend on the values of the rheological param-
eters. Experimental measurements of oscillatory
convection in viscoelastic mixtures were reported
by Kolodner [56] in a DNA suspension; and theo-
retical studies of the convection thresholds for bi-
nary viscoelastic mixtures in different types of flu-
ids, can be found in Refs. [57–61]. Recently, stud-
ies on stationary convection in viscoelastic mag-
netic fluid have been done [62, 63].

The purpose of the present paper is to ana-
lyze the influence of the viscoelasticity in con-
vective thresholds in magnetic fluid, in particu-
lar, where the separation ratio and magnetic sep-
aration ratio are not too large the simple fluid
approximation can be used [29]. To this aim an
Oldroyd viscoelastic magnetic fluids heated from
below is considered. The description of the sys-
tem involves many parameters whose values have
not yet been determined accurately. Therefore, we
are left with some freedom in fixing the parameter
values. In order to be as exhaustive as possible,
we will analyze the linear regime for two differ-
ent limiting cases of boundary condition i.e. the
free−free (FF) and the rigid−rigid (RR) bound-
ary conditions. In the first case (FF), one can ex-
plicitly calculate the threshold for convection in
function of the parameters of the fluid. In addi-
tion, we have further checked that we retrieved
the previous results obtained in simplified situ-
ations by other authors. In the case of realistic
boundary conditions (RR), an analytical calcu-
lation is not tractable and we numerically solve
the linearized system using a collocation spectral
method in order to determine the eigenfunctions
and eigenvalues and consequently the convective
thresholds. The paper is organized as follows: In
Sec. 2, the basic hydrodynamic equations for vis-
coelastic magnetic fluid convection are presented.
In Sec. 3 the linear stability analysis of the con-
duction state is performed. Finally, conclusions
are presented in Sec. 4.
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Figure 1: A vertical cut through the fluid layer. Note the
y-axis point into the xz-plane.

2. Basic Equations

We consider a layer of incompressible mag-
netic fluid in a viscoelastic carrier liquid, of thick-
ness d, parallel to the xy-plane, with very large
horizontal extension in a gravitational field g
and subject to a vertical temperature gradient.
The magnetic fluid properties can be modeled
as electrically nonconducting superparamagnets.
The magnetic field H is assumed to be oriented
in a direction parallel to the ẑ axis. It would
be homogeneous, if the magnetic fluid were ab-
sent. Let us choose the z-axis such that g = −gẑ
and that the layer has its interfaces at coordi-
nates z = −d/2 and z = d/2. A static tem-
perature difference across the layer is imposed,
T (z = −d/2) = T0 +4T and T (z = d/2) = T0.
The set-up of the problem is drawn in Fig. 1.
Under the Boussinesq approximation, the balance
equations read as

∇ · v = 0, (1)

ρ0dtv = −∇peff +∇ · τ + ρg + M · ∇H, (2)

cv,H
T0

dtT + χTH0 · dtH = κ̄∇2T + ϑH0 · ∇2H,

(3)

where dtf = ∂tf +v ·∇f is the total derivative, v
is the velocity field, peff is the effective pressure
which contains the static hydrodynamic pressure
and the gradient term of the magnetic force, ρ is
the mass density, ρ0 is a reference mass density, τ
is the extra stress tensor, M is the magnetization
field, cv,H is the specific heat capacity at constant
volume and magnetic field, T is the temperature,

T0 is a reference temperature, χT is the pyromag-
netic coefficient and κ̄ is the thermal diffusivity,
and ϑ ∝ χH/ρ0, being χH the magnetic suscepti-
bility along the field.

For the total density we use the following lin-
ear state equation

ρ = ρ0(1− αT4T + αHH0 · 4H) (4)

where αT and αH are the thermal and the mag-
netic expansion coefficients, respectively. In the
following, we denote4f = f−f0. In addition, for
the magnetic field H and the magnetic induction
B, we suppose that the system is not conductive,
i.e., it is governed by Maxwell equations

∇×H = 0, (5)

∇ ·B = 0. (6)

Furthermore, we assume a linear relationship be-
tween these fields B = H + M and intro-
duce the scalar magnetic potential H = −∇φ
to fulfill Eq. (5). The magnetization field is as-
sumed to follow instantaneously the external field
M = M(T,H)Ĥ with the usual phenomenologi-
cal equation of state

M(T,H) = M0 − χT4T + χHH0 · 4H (7)

where 4 denotes deviations from the ground
state.

A constitutive equation relating the extra
stress tensor τ and the shear rate has also to be
introduced. In a Newtonian incompressible fluid,
the extra stress tensor is related to the strain ten-
sor via the Newton law, τ = 2νD, where D is the
symmetric part of the velocity field gradient and
ν is the kinematic viscosity. For complex poly-
meric fluids, a more general constitutive relation
between stress and strain rate τ = τ (D) is neces-
sary to describe the behavior. This last relation is
subjected to symmetry restrictions. One type of
constitutive relation that satisfies these symmetry
requirements and that may be further justified by
the kinetic theory of dumbbells has been proposed
by Oldroyd [39]. This family of models, developed
in the fifties of the last century, include particu-
lar cases that are widely used for different kinds
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of polymeric solutions. In the Oldroyd model, the
constitutive equation is written as

(1 + λ1Dt)τ = 2ν(1 + λ2Dt)D, (8)

where ν is the static viscosity, λ1 is the relax-
ation time, and λ2 is the retardation time, the last
two parameters characterize the viscoelastic time
scales. For thermodynamic stability reasons both,
λ1 and λ2, are taken to be positive. The sym-
bol Dt in Eq. (8) denotes an invariant (”frame-
indifferent”) time derivative, defined as

Dtτ = dtτ +τ ·W−W ·τ +a(τ ·D+D ·τ ), (9)

where W is the skew-symmetric part of the ve-
locity field gradient; also a is a phenomenological
parameter that lies in the range −1 to +1. For
a = −1, one gets the lower convected Jeffrey‘s
model (Oldroyd B), for a = 0 one gets the so-
called corotational Jeffrey‘s model, and a = 1 de-
scribes the upper convected Jeffrey‘s model (Ol-
droyd A). Let us comment that the coefficient a
is not completely independent of the other rhe-
ological parameters [68]. Some limiting cases are
λ2 = 0 that leads to a Maxwellian fluid, while a
Newtonian fluid requires both λ1 = 0 and λ2 = 0.

Let us now analyze the boundary conditions
(BCs) of the system. A static temperature differ-
ence across the layer is imposed, T (z = −d/2) =
T0 +4T and T (z = d/2) = T0; as the magnetic
BCs we use the typical continuity conditions of
the Maxwell equations, i.e., n× (Hin −Hex) = 0
and n · (Bin −Bex) = 0, where n is a unit vector
normal to the boundaries. Moreover, for the ve-
locity field we will consider both Free-Free (FF)
and and Rigid-Rigid (RR) interfaces. Hence, from
Eqs. (1)−(8) and using these boundary conditions
the conductive basic rest state is given by

vcon = 0, (10)

Tcon(z) = T̄ − βz, (11)

Hcon(z) = H0(1 + λβz), (12)

where β = (4T/d) and λ = χT/(1 + χH). After
some algebra, the equations for the dimensionless
perturbations can be written as

∇ · v = 0 (13)

P−1dtv =−∇peff +∇ · τ +RaΣ (14)

(1 + ΓDt)τ = (1 + ΓΛDt)D (15)

dt(θ −M4∂zφ) = (1−M4)w +∇2θ (16)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (17)

∇2φext = 0 (18)

where {v, θ, φ} are the dimensionless velocity
perturbation, the temperature perturbation and
the dimensionless magnetic potential perturba-
tion, respectively; and where Σ = Π1(θ, φ)ẑ +
M1θ∇(∂zφ) with Π1 = (1 +M1)θ− (M1−M5)∂zφ
and ∇2

⊥ = ∂xx + ∂yy. In Eqs. (13)-(18), the fol-
lowing groups of dimensionless numbers have also
been introduced: (a) (pure fluids) The Rayleigh
number, Ra = αTg4Td3/κν, accounting for
buoyancy effects; and the Prandtl number, P =
ν/κ, relating viscous and thermal diffusion time
scales. (b) (magnetic fluid) The strength of the
magnetic force relative to buoyancy is measured
by the parameter M1 = βχ2

TH
2
0/(ρ0gαT (1 + χ));

the nonlinearity of the magnetization, M3 = 1 −
(χHH

2
0 )/(1 + χ), a measure of the deviation of

the magnetization curve from the linear behav-
ior M0 = χH0; the relative strength of the tem-
perature dependence of the magnetic suscepti-
bility M4 = χ2

TH
2
0T0/cH(1 + χ); and the ratio

of magnetic variation of density with respect to
thermal buoyancy M5 = αHχTH

2
0/(αT (1 + χ)).

(c)(viscoelastic fluid) The Deborah number, Γ =
λ1κ̄/d

2, and the ratio between retardation and
stress relaxation times, Λ = λ2/λ1. Since λ1,2

are positive, so are Γ and Λ. For Γ = 0 one re-
covers the Newtonian fluid while for Λ = 0 the
Maxwellian fluid is obtained.

Let us comment on the numerical values of
the parameters; the parameter Ra can be changed
by several orders of magnitude, while a typical
value for P in viscoelastic fluid is P ∼ 100 − 103.
The magnetic numbers have the following order of
magnitude M1 ∼ 10−4 − 10, M3 & 1, M4 ∼M5 ∼
10−6 for typical magnetic field strengths [29, 30].
For aqueous suspensions it is suggested that the
Deborah number is about Γ ∼ 10−3−10−1 [56, 64–
66], but for other kinds of viscoelastic fluids the
Deborah number can be of the order of Γ ∼ 103.
Unfortunately, no experimental data are available
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for either the retardation or the stress relaxation
times, so we treat Λ as arbitrary in the range [0, 1].
In addition, the above set of equations is still un-
necessarily complicated. We will simplify it first
by neglecting M4, which is a common simplifica-
tion in the description of instabilities in ferrofluids
[5]. Since M4 is not related to viscoelastic effects,
which we are interested in here, we expect not to
loose any reasonable aspect of the problem un-
der consideration. The same is true for the coeffi-
cient M5. So, the values of {M4,M5} in the follow-
ing analysis are taken to zero. Thus, we are left
with two magnetic field dependent effects char-
acterized by the parameters {M1,M3}. The first
one denotes the influence of the Kelvin force and
is expected to have the dominant influence on the
convection behavior. The second parameter, M3 is
different from 1 due to the intrinsic nonlinearity
of the magnetization and is only a weak function
of the external magnetic field. In the next section,
we study the stability of the conduction state.

3. Linear Stability Analysis

In order to calculate the linear stability, we
only need the linear parts of Eqs. (13)-(17). This
is readily done by neglecting the advective terms
v · ∇ and replacing Dt by ∂t. Moreover, the effec-
tive pressure and two components of the velocity
field could also easily be eliminated by applying
the curl (∇×...) and double curl (∇×∇×...) of the
Navier-Stokes equation and then considering only
the z-component of the resulting equations, w (i.e.
the vertical velocity component). After some al-
gebra, the linear equations read

P−1∂t∇2w = ∇2(∇ · τ )z +Ra∇2
⊥LΣ (19)

(1 + Γ∂t)(∇ · τ )z = (1 + ΓΛ∂t)∇2w (20)

∂tθ = w +∇2θ (21)

(∂zz +M3∇2
⊥)φ− ∂zθ = 0 (22)

where LΣ = (1 +M1)θ−M1∂zφ. We remark that
Eqs. (19) and (20) can be combined in order to get
a single equation for w . One can define the vector
field u = (θ, φ, w)T that contains the important
variables for the linear analysis. Using standard

techniques [67], the spatial and temporal depen-
dencies of u are separated using normal mode ex-
pansion

u(r, t) = U(z) exp[ik · r⊥ + st], (23)

being U = (Θ,Φ,W )T , where k is the hori-
zontal wavenumber vector of the perturbations,
r⊥ is the horizontal vector position and where
s = σ + iΩ denotes the complex eigenvalues; σ is
the growth factor of the perturbation, and Ω its
frequency. Using the ansatz (23), Eqs. (19)-(22)
are reduced to the following coupled ordinary dif-
ferential equations

D2Θ = ξ1Θ−W (24)

D2Φ = ξ2Φ +DΘ (25)

D4W = ξ3D
2W − ξ4W +Ra(ξ5Θ− ξ6DΦ) (26)

where Dnf = ∂nz f , ξ1 = k2 + σ, ξ2 = M3k
2,

ξ3 = 2k2 + sQ/P , ξ4 = k2 (k2 + sQ/P ), ξ5 =
k2 (1 +M1)Q and ξ6 = k2M1Q such that Q =
(1 + sΓ)/(1 + sΛΓ). In the following two subsec-
tions, we analyze the results of the linear stability
analysis for the two considered boundary condi-
tions.

3.1. Idealized Boundary Conditions (FF)

In order to solve the set of differential equa-
tions analytically, the following boundary condi-
tions

DΦ = Θ = D2W = W = 0, (27)

are imposed at z = ±1/2. The z-dependence of
the eigenfunctions of the stability problem can
then be described by simple sine and cosine func-
tions. The eigenvalue problem produces a disper-
sion relation

P(s) ≡ a0 + a1s+ a2s
2 + a3s

3 = 0, (28)

where aj are functions of the system parameters

a0 = Pq6%− k2P
(
%+ k2M1M3

)
Ra (29)

a1 = q4(1 + ζ)%− k2ΓP
(
%+ k2M1M3

)
Ra (30)

a2 = q2%
(
1 + q2Γ[1 + PΛ]

)
(31)

a3 = q2%Γ (32)
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where ζ = P (1 + q2ΓΛ) with q2 = k2 + π2 and
% = M3k

2 + π2. Eq. (28) allows for an analytical
expression of the Rayleigh number as function of
{s, k}

Ra =
q2% (q2 + s) (s+ Γs2 + Pq2J )

k2 (k2M1M3 + %)PT
, (33)

where J = 1 + sΛΓ and T = 1 + sΓ. There are
two common particular bifurcation cases, the sta-
tionary bifurcation with s = 0, and the oscillatory
instability that occurs when s = iΩ with Ω finite
and real. For specific values of the parameters, the
critical Ra values of these two instabilities, Rasc
and Raoc, respectively, can be equal constituting
a codimension-2 bifurcation. Let us consider first
the stationary case.
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Figure 2: (Color online) Critical stationary Rayleigh num-
ber, Rasc, as a function of M1 at M3 = 1.1. The inset
shows Rasc as a function of M3 at M1 = 10.

3.1.1. Stationary Bifurcation

In the stationary case (s = 0), we find the
marginal stability curve between the Rayleigh
number and the wavenumber of the perturbation

Ras =
%q6

k2 (k2M1M3 + %)
(34)

to be identical to that for a simple ferrofluid [22].
Hence, in this case, the viscoelastic effects do
not appear at linear order. The minimum of the
marginal curve (34) (∂kRas = 0) gives the critical
wave-number ksc and, subsequently, the critical

0
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Figure 3: 3D phase diagram showing where Ω is non-
vanishing as a function of the {k,Γ,Λ} parameters.

Rayleigh number, Rasc = Ras(ksc), of the most
unstable perturbation. Fig. 2 shows the magnetic
field dependence of the linear threshold, where
the field is represented by M1 ∼ H2. We ob-
serve that Rasc decreases for strong fields indi-
cating the destabilizing effect of a magnetic field.
The threshold also decreases as function of M3

(inset), although values of M3 > 1.5 are rather
unrealistic.
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Figure 4: (Color online) Frequency of the critical pertur-
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Figure 5: (Color online) Critical oscillatory Rayleigh num-
ber, Raoc, as a function of Γ (upper part) and as a function
of Λ (lower part) for different values of M1 at P = 10
and M3 = 1.1. The different values of M1 are repre-
sented by different symbols from bottom to top M1 =
{10, 5, 2, 1, 0.5, 0.1} = {�, •,N,H,�, ∗}; note the logarith-
mic scale of the ordinate.

3.1.2. Hopf Bifurcation

We now discuss the oscillatory bifurcation. For
a nonzero real frequency Ω the eigenvalue Eq.
(28) is complex and constitutes two independent
conditions for its real and imaginary parts, sepa-
rately. Being a cubic equation, one can easily find
the two solutions Ω2 = a0/a2 and Ω2 = a1/a3,
which are represented by

Rao
Ras

= Λ +
1− Λ

q4

(
q2

Γ
− q2

ΓΞ
+
q4

Ξ

)
− Ω2

Pq4
(35)

where

Ω2 =
q2PΓ(1− Λ)− (1 + P )

Γ2(1 + PΛ)
, (36)

with Ξ = 1+(ΓΩ)2. For real Ω its square has to be
positive. Obviously, this cannot be achieved at all
for Newtonian fluids and poses an lower limit on
the Deborah number for Oldroyd (and Maxwell)
fluids,

Γ ≥ (1 + P )
/(
Pq2(1− Λ)

)
(37)
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Figure 6: (Color online) The codimension-2 bifurcation
line, Rasc = Raoc, that separates the stationary insta-
bility region (above) from the oscillatory one (below) for
different values of M1. Parameters P = 10 and M3 = 1.1
are held constant. The different values of M1 are repre-
sented by different symbols, from top to bottom M1 =
{10, 1, 0.1} = {�,N, •}

which also means Λ must not reach the value 1. In
terms of the original parameters it means that λ1

has to exceed λ2 by a finite, q2 dependent amount.
Note this existence condition does not depend on
the magnetic field strength, although, of course,
Rao depends on it through Ras. Fig. 3 shows a 3D
phase diagram for the existence of oscillatory con-
vection as a function of the parameters {k,Γ,Λ}.

The critical wave number koc follows from the
condition ∂kRao = 0 and replacing this value in
Eqs. (35) and (36) the critical Rayleigh number
and frequency are obtained.

Fig. 4 shows the critical frequency, Ωc, as a
function of Deborah number, Γ, for different val-
ues of the parameter M1. One observes that Ωc

reaches its maximum value for intermediate val-
ues of Γ. This maximum increases when M1 in-
creases. Interestingly enough, one can get an ap-
proximate power law for the maximum critical fre-
quency as a function of M1. It is given by the
formula Ωmax

c ≈ aM b
1 where {a, b} are parame-

ters that are numerically fitted. For M3 = 1.1
and P = 10, one gets {a, b} = {5.44, 0.0628}.
The upper part of Fig. 5 displays the critical os-
cillatory Rayleigh number, Raoc, as a function
of the Deborah number, Γ for different values
of M1. One observes that Raoc decreases when
Γ increases and reaches an asymptotic value for
Γ >> 1. The influence of the parameter M1 is
similar to that of Γ. We have determined the

7



asymptotic values Γ >> 1 of Raoc in the range
M1 ∈ [0, 10] where they follow an exponential de-
cay law Raaoc = a + b exp(−cM1), with a, b, c pa-
rameters to be fitted. For P = 10 and M3 = 1.1,
one gets {a, b, c} = {60.25, 258.4, 0.359}. Fig. 5
(lower part) shows Raoc as a function of the ratio
between the retardation and relaxation times, Λ,
again for different values of M1. We observe that
Raoc increases when Λ is increased.

We remark that the onset of the oscillatory
instability (not possible for Newtonian fluids)
strongly depends on the viscoelastic properties,
in particular on the Deborah number. Indeed for
small Deborah numbers the threshold is unrealis-
tically high, but for large one it is drastically re-
duced and the oscillatory instability usually pre-
cedes the stationary instability, i.e. it occurs at a
lower Rayleigh number.
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k oc

Λ=0.05
Λ=0.1
Λ=0.5
Λ=0.9

Figure 7: (Color online) The critical wavelength koc as a
function of Γ for Λ = 0.05 (solid black), = 0.1 (dashed
red), = 0.5 (dotted green), and = 0.9 (dashed-dotted blue).
The horizontal dotted line indicates ksc for the stationary
instability. The rest of the parameters have been fixed to
P = 10, M1 = 0.1, M3 = 1.1, and χb = 1.

3.1.3. Codimension-2 Bifurcation

There exists a range of parameters where the
critical oscillatory and stationary Rayleigh num-
bers have the same value, Rasc = Raoc. This is
possible due to the non-Newtonian properties of
the fluid layer. Fig. 6 shows this line in the Γ−Λ
space that divides the stationary instability region

(above) from the oscillatory one (below) for dif-
ferent values of M1. The influence of M1 is rather
weak, since Raoc has a similar M1 dependence as
Rasc. Numerically, one can fit the relationship be-
tween Γ and Λ along this line by the approximate
formula

Γ = a

[
1− exp

(
−Λ

b

)]
+ cΛd (38)

where {a, b, c, d} are fit parameters that depend
on {P,M3,M1}. For example, if we take P = 10,
M3 = 1.1 and M1 = 0.1, one gets {a, b, c, d} =
{0.908, 0.17, 0.025, 5.51}.
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Ω

c

-1/2

Figure 8: (Color online) Same as Fig. 7 for the critical fre-
quency Ωc. The log-log plot reveals a slope of −1/2 (dotted
line) for Γ >> 1.

3.2. Realistic Boundary Conditions (RR)

The use of free–free boundary conditions at
the two horizontal boundaries is a useful mathe-
matical simplification but is not completely phys-
ically sound. The correct boundary conditions for
a viscous or viscoelastic fluid is to impose

W = DW = Θ = 0, (39)

at the two horizontal rigid boundaries. In addi-
tion, in the case of a finite magnetic permeability
χb of the rigid boundaries, the scalar magnetic
potential must satisfy the following BCs

(1 + χb)DΦ± kΦ = 0, (40)
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at z = ±d/2, respectively [22]. Note that in the
limit when χb tends to infinity, Eqs. (40) tend
to DΦ = 0. In order to solve Eqs. (24)-(26) with
these realistic boundary conditions, we use a spec-
tral collocation method. Spectral methods ensure
an exponential convergence to the solution and
are the best available numerical techniques for
solving simple eigenvalue – eigenfunction prob-
lems. Here, we follow the technique of colloca-
tion points on a Chebyschev grid as described in
[69]. The collocation points (Gauss-Lobato) are
located at height zj = cos(jπ/N) where the in-
dex j runs from j = 0 to j = N . Note that here
the z-variable ranges from −1 to +1 and one has
therefore to rescale Eqs. (24)-(26) accordingly, be-
cause the physical domain is defined in the range
(−1/2,+1/2).

0.01 1 100 10000
Γ

10

100

1000

10000

R
a oc

Figure 9: (Color online) Same as Fig. 7 for the critical
Rayleigh number Raoc. The horizontal dotted line indi-
cates Rasc for the stationary instability.

We useN = 8 collocation points in the vertical
direction, for which the equations and the bound-
ary conditions are expressed. We have checked
that using N = 10 collocation points only modi-
fies the fourth or fifth significant digit of the re-
sult. By using the collocation method, the set
of differential equations (24)-(26) is transformed
into a set of linear algebraic equations. The eigen-
functions (Θ(z),Φ(z),W (z)) are transformed into
eigenvectors defined at the collocation points. The
Rayleigh number is again used as the eigenvalue
of the problem. After this stage of discretization,

one is left with a classical generalized eigenvalue–
eigenvector problem that can easily be solved us-
ing the Matlab routine ”eig” [70].

In the case of the oscillatory instability consid-
ered here, one has to make sure that the Rayleigh
number (as being a physical quantity) is a real
number by choosing a correct value for Ω. There-
fore, one is left with a triplet {Ra, k,Ω} that de-
fines a marginal stability condition (for a fixed
value of the horizontal wavenumber k). This pro-
cedure is repeated for several values of k leading
to the marginal stability curve Ra versus k. The
minimum of this curve gives Raoc and koc, and the
corresponding value for the critical frequency Ωc.
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Figure 10: (Color online) The critical parameters Rayleigh
number Raoc (black squares) and Ωc (red circles) as a func-
tion of Λ for a very large fixed value of the Deborah num-
ber Γ = 105. The other parameters are P = 10, M1 = 0.1,
M3 = 1.1 and χb = 1.

Figures 7-9 show the critical quantities as
functions of the viscoelastic properties of the liq-
uid. In all three figures it is manifest that for small
values of the Deborah number Γ the oscillatory in-
stability disappears, with the threshold increasing
for increasing Λ. This is in full agreement with the
analytical limit, Eq. (37), obtained for idealized
boundary conditions. For intermediate values of
Γ, one observes in Fig. 9 the codimension-2 points,
where the stationary and oscillatory convection
have the same threshold. These points are shifted
to higher Γ values when Λ is increased, again in
agreement with the FF case (Fig. 6). For large
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values of the Deborah number, Γ >> 1, the criti-
cal values show a distinctive asymptotic behavior.
In particular, koc → ksc, the critical wavevector
tends to the value of the stationary case. The os-
cillatory threshold Raoc → ΛRasc reaches a con-
stant value that is by the factor Λ smaller than
the stationary one. This proportionality with Λ
is also apparent in Fig. 10. Finally, the critical
frequency goes to zero, Ωc → A/

√
Γ, with an ex-

ponent of −1/2. The pre-factor A depends on the
Deborah number. Figure 10 displays the latter de-
pendence for a very large fixed value of Γ = 105

in the asymptotic regime. There is, however, no
simple relation between Ωc and Λ.

0.01 0.1 1 10 100
M1

4.5

4.6

4.7
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4.9

5

5.1

k oc

Figure 11: The critical wavevector koc as a function of
M1 ∼ H2 representing the external field dependence. The
other parameters are M3 = 1.1, P = 10, Γ = 1, Λ = 0.1,
and χb = 1.

For a ferrofluid an external magnetic field is
an important means of manipulating its behav-
ior. The field dependence of the critical quantities
comes mainly through M1, which is directly pro-
portional to the field squared, and to a much lesser
extent through M3, which, therefore, has been
kept constant for the fields considered here. In
Figs. 11-13 the influence of an external field on the
critical quantities is shown. koc and Ωc increase
slightly with the magnetic field. The threshold de-
creases rather strongly with the field and shows an
asymptotic behavior Raoc ∼ 1/M1 for M1 >> 1.
As in the stationary case, an external field is
destabilizing.
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Figure 12: Same as Fig. 11 for the critical frequency Ωc
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Figure 13: Same as Fig. 11 for the critical Rayleigh number
Raoc. The log-log plot reveals the slope −1 (dotted line)
for M1 >> 1.

We have examined the influence of the Prandtl
number on the critical quantities, Raoc, Ωc, and
koc (Fig.14). While koc is rather insensitive to P ,
the critical frequency increases strongly, when P
increases from 1 to 100. Even more interesting
is the non-monotonous behavior of the threshold
Raoc, which shows a minimum around P ≈ 7.
There is no simple physical explanation for this.
For large Prandtl numbers the critical quantities
reach asymptotically constant values. This regime
is only obtained at rather high values (P & 200
for the present case). This is quite different from
the case of Newtonian fluids, where, as a rule of
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Figure 14: (Color online) The critical parameters Raoc,
Ωc, and koc as a function of the Prandtl number P . The
black solid line refers to Raoc (left scale), the red dashed to
Ωc and the green dotted to 10koc (right scale). The other
parameters are fixed at M1 = 0.1, M3 = 1.1, Γ = 0.1,
Λ = 0.1, and χb = 1.

thumb, nothing changes anymore for 10 < P →
∞.

Finally, we show that the use of the realistic
magnetic boundary conditions (40) and, in par-
ticular, a finite value of the magnetic susceptibil-
ity χb of the rigid boundaries does not consider-
ably change the critical values Raoc and Ωc as is
demonstrated in Fig. 15. Both, Raoc and Ωc, in-
crease by only a few percent, when χb increases
from zero to infinity, therefore justifying a pos-
teriori the use of the simpler boundary condition
DΦ = 0.

4. Final Remarks

In the present work, Rayleigh-Bénard convec-
tion in a magnetic viscoelastic liquid is studied.
The stability thresholds for both, the stationary
and the oscillatory convection, have been deter-
mined. Two different boundaries conditions for
the velocity field were analyzed, the so-called fee-
free and rigid-rigid ones. For the former the re-
sults of Finlayson [22]for the stationary convec-
tion have been re-obtained. In addition, we have
provided analytical formula for the oscillatory
convection. For weakly viscoelastic fluids the criti-
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Figure 15: (Color online) The critical Rayleigh number
Raoc (black solid line, left scale) and Ωc (red dashed line,
right scale) as a function of the magnetic susceptibility χb

of the rigid boundaries. The other fixed parameters are as
in Fig. 14.

cal Rayleigh number for the oscillatory convection
is much higher than that for the stationary one,
while for high Deborah numbers the oscillatory
instability always precedes the stationary insta-
bility. In this paper, we have also calculated the
range of parameters where the codimension-2 bi-
furcation appears. In the case of rigid-rigid bound-
ary conditions, the convection thresholds are cal-
culated numerically by the spectral method. The
technique of collocation points (Gauss-Lobato) as
described in [69] was used.

Due to the presence of various destabilizing
effects, i.e. buoyancy and magnetic forces, and of
additional relaxation channels due to the Oldroyd
model, the discussion of the stability curves be-
comes rather intricate. An oscillatory instability,
whose critical frequency is a rapidly varying func-
tion of the Deborah number, is competing with
the stationary one. As a result, the codimension-2
bifurcation line, separating those two instabilities,
strongly depends on the structure of the Oldroyd
model and its relaxation times.

Let us finally comment that, very often, fer-
rofluids show a finite separation ratio and a fi-
nite magnetic separation ratio and therefore re-
quire a binary mixture description. However, for
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materials where the separation ratio and mag-
netic separation ratio are not too large the simple
fluid approximation is valid [29]. The present work
is based on this last approximation. A detailed
study on the oscillatory bifurcation for magnetic
binary mixtures is still in progress.
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R.G. Rojas, J. Mag. Mag. Mat. 322, 3576 (2010).

[64] T.T. Perkins, D.E. Smith, S. Chu, Science 276, 2016
(1997).

[65] S. R. Quake, H. Babcock, S. Chu, Nature 388, 151
(1997).

[66] H. Babcock, D.E. Smith, J.S. Hur, E.S.G. Shaqfeh,
S. Chu, Phys. Rev. Lett. 85, 2018 (2000).

[67] S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability, Dover, New-York (1981).

[68] H. Pleiner, M. Liu and H.R. Brand, Rheologica Acta.
43, 502 (2004).

[69] L.N. Trefethen, Spectral Methods in Matlab, SIAM,
Philadelphia (2000).

[70] Matlab7 from Mathworks Inc., Natick, MA (USA).

13


