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Abstract. Transport of material through pipes or channels in mines or gravel quarries seems to be a simple and economic
form of conveying blasted ore between different levels. Despite the apparent advantages of moving the material by means of
the gravity force, there exists an important problem that makes the applicability of this method more difficult: the election of
the pipe diameter to prevent clogging of the stones. It was R. Kvapil in the sixties who extended the ideas of granular flows in
silos to underground mining. Nevertheless, after his pioneering works there are only a few manuscripts focused on this topic,
and many questions remain unsolved. In this work, we present experimental results about the flow of particles (gravel) driven
by gravity through tilted tubes. The amount of material discharged between clogs shows that the probability of clogging can
be estimated by the same procedures introduced for silos. Finally, by changing the ratio between the tube diameter and the
typical particle size, we discuss about the existence or not of a critical size beyond which clogging is not possible.
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INTRODUCTION

Ore passes are vertical or inclined pipes dug out of
rock mass. This kind of structures are commonly used in
underground mining to transport the ore or waste from
one level of the mine to another using the gravity driv-
ing force [1]. Unfortunately, this transport method may
become problematic because of the formation of domes
that block the flow of material [2]. These interruptions
slow down the work progress in the mine and provoke
extremely risky situations when they are removed. In-
deed, the blockage of theses ducts is a critical point for
the mine operation conditions and therefore their proper
working is very important, not only for the safety condi-
tions but also from an economical point of view.

It is commonly accepted that the blockage occurrence
mainly depends on the ratio φ =D/d, where D is the di-
ameter of the chute and d the typical size of the particles.
In literature, many works can be found about this topic
but there is not any agreement about the value of φ that
allows to assure the absence of clogging [3, 4, 5, 6]. In-
deed, the figures range from 3 to 10, although the most
accepted limit is φ > 5 [5].

The problem of blockage has been widely investigated
in the discharge of grains from silos and hoppers [7, 8].
In this geometry, the blockage phenomenon has been
carefully analyzed from a probabilistic point of view,
yet a debate still goes on about the existence of a criti-
cal size of the orifice above which clogging is not pos-
sible [9, 10, 11]. The experimental procedure in those
works consists on measuring the avalanche size s, de-

fined as the number of grains discharged between two
successive clogs. A general finding is that, for a fixed φ ,
the distribution of avalanche sizes decays exponentially
and can be characterized by only one parameter, i.e., the
mean avalanche size 〈s〉. In order to explain this behav-
ior, Zuriguel et al. proposed a simple probabilistic model.
The authors suggest that the probability p that a particle
passes through the orifice is constant during the whole
avalanche. Hence, the distribution of avalanche sizes can
be described by the following expression:

ns = ps(1− p) (1)

where (1 − p) is the probability that a grain forms
an arch that blocks the exit. The main consequence of
this model is that there is a direct relationship between
〈s〉 and the clogging probability [11]. Therefore, the
mean avalanche size, 〈s〉, was used to characterize the
existence of a critical outlet size. Indeed, mean avalanche
size tends to infinity when the ratio between the size
of the outlet and the particle approaches a critical value
φc of the outlet size. In other words, blockages are not
possible for φ ≥ φc. In the case of monosized spherical
grains in a three dimensional flat bottomed silo, a value
of φc = 4.94±0.03 is reported which is very close to the
one previously proposed by Kvapil [5]. In the same work
[10], the authors also show that the shape of particles has
an important effect on the value of φc.

Indeed, the importance of the presence of flat faces in
the particles has been put on evidence in the last years. It
has been qualitatively demonstrated that flat faceted par-
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FIGURE 1. (a) Picture of the experimental setup where a blockage can be observed. (b) Zoom of a dome that blocks the flow
of stones. (c) Sketch of the experimental setup where the arrow loop represents the movement of the material. B, conveyor belt;
C, camera; P, pipe; R, reservoir of granular material; S, shaker; SC, screw conveyor. Inset: Detail of the limestones used in the
experiment.

ticles oppose a significatively stronger resistance to flow
out of a silo than rounded ones [12, 13]. Nevertheless, as
far as we know, there is not any quantitative study of this
problem in the literature.

In this work we present experimental results about the
clogging of a poly-disperse, non-spherical and faceted
granular material flowing along a pipe. Despite the
absence of constriction (or bottleneck) - to which it
has been traditionally attributed the responsibility of
clogging- we find that the distribution of the avalanche
sizes is exponential, in analogy to the silo case. More-
over, we show that the mean avalanche sizes for different
φ can be fitted by the equation 3 and the value of φc is
obtained.

EXPERIMENTAL SETUP

In Fig. 1 we show a picture of the experimental setup. It
consists of a transparent polymethacrylate pipe fixed to a
metal sheet tilted an angle θ = 70◦ from the horizontal.
The length of the tube is 1.35 m and different diameter-
s D ranging from 30 to 42 mm have been used for the
different trials. The pipe is filled with a mixture of non-
spherical limestone particles whose sizes range from 2 to
12 mm. The size of the stones is measured by image anal-
ysis and it is characterized by the equivalent circle diam-
eter d defined as the diameter of a circle with the same
projected area than the particle. The polydisperity of the
sample quantified by this method is around 35%. We take
as the characteristic sizes of the granulometry the values

that correspond to the 50% and 95% of the cumulative
distribution of the fragments (d50% and d95% respective-
ly). Let us remark that assigning a circular shape to this
material is a crude approximation; indeed, the material
presents many flat faces (see inset of Fig. 1.c) which im-
ply highly heterogeneous stress propagation [15]. As this
issue is very complicated and involved, it will be studied
elsewhere.

The granular material is feeded into the pipe from a
reservoir at the top. At the bottom exit of the tube, the
material is dragged by a conveyor belt that moves at a
constant velocity (1 cm s−1) and controls the discharge
flow-rate (approximately 100 gs−1). At the end of the
belt, the material falls into a system of two screw convey-
ors that transport the particles again to the top reservoir.
This refilling mechanism ensures that there are always
particles in the top reservoir to fill the pipe.

The experimental protocol starts with the pipe com-
pletely filled with material. When the conveyor belt is
switched on, the stones start to flow down the tube. A
camera takes pictures every 0.5 seconds from a small
region at the top of the pipe. Pairs of consecutive pho-
tographs are compared pixel by pixel. If there are no d-
ifferences between two consecutive images, this means
that the flow has been halted due to a blockage of parti-
cles down the pipe (Fig. 1). When such an event occurs,
we wait for a few seconds to ensure that the clog is stable.
Then, all the system is stopped and a computer records
the duration of the avalanche t f low defined as the time
elapsed from the beginning of the flow until the block-
age. Once the data are recorded, the flow is resumed by
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FIGURE 2. Survival distribution R(s) of the avalanche sizes
s, measured in number full discharged pipes. The squares are
the experimental data and the solid line is a linear fit. Note the
semilogarithmic scale.

breaking the blocking arch as a result of a vibration im-
posed to the whole pipe. This is accomplished with an
electro-mechanical shaker placed behind the tilted metal
sheet (see Fig. 1).

We also measure the mean time τ that it takes to dis-
charge a full pipe filled of grains. Hence, we describe the
avalanche size distribution by using the amount of mate-
rial discharged between two clogging events, measured
in number of discharged full pipes, N = t f low/τ . In the
next section we will explain more in depth the reason for
which we have decided to use this magnitude to measure
the avalanche size.

RESULTS

We register around 200 avalanches for each different
pipe diameter. From the data, we compute the survival
function of the avalanche sizes R(N) defined as:

R(N) =
∫ ∞

N
n(u)du= 1−F (N) (2)

where F(N) is the cumulative distribution function
of the avalanche size distribution n(u). From the data
displayed in Fig. 2 (in semilogarithmic scale), it is clear
that the survival function shows an exponential decay
for a fixed value of D. As this feature is common for
all the explored values of D, the results agree with an
exponential distribution as introduced for the case of
silos [8], embodied in Eq. 1. Hence, we can define p as
the probability that a pipe as a whole will be discharged
without forming a blocking arch.

At this point, the reason for measuring the avalanche
size in number of discharged tubes can be explained. If
this measurement had been done simply in number of

FIGURE 3. Mean avalanche size 〈s〉 in number of discharged
tubes as a function of φ . Different symbols are used to indicate
the characteristic size of the particle granulometry used to
calculate the value of φ . The solid lines correspond to the fitting
using equation 3.

particles as for the case of the silo, it becomes obvious
that p will depend on the tube length. The longer the
length, the higher the probability that a particle forms
an arch at any position leading to a blockage. However,
when measuring p in number of discharged tubes, it is
expected that the results will not depend on the tube
length if we assume that the clogging is equally likely
at all the positions along the pipe. For instance, if we
think of a tube which length is half the one used in this
work, the probability that a particle gets clogged should
be divided by two. But the number of particles in the tube
is also divided by two, rendering the same probability of
clogging per tube length that in the case under study. This
issue can be also understood if we think of the time that
one should wait until a clog is developed. If we divide
by two the length of the tube, the probability of getting
a clog in a given amount of time should be also divided
by two. But the time that it takes to discharge this half-
length pipe is also divided by two. Hence, we expect that
the probability of getting a clog in the amount of time
that the pipe needs to be discharged does not depend on
the pipe length. Of course this idea needs to be checked
and small effects could appear for very short pipes, where
differences in pressure are expected and the clogging
probability may not be uniform at every place along the
pipe.

Once we have observed the exponential nature of
the avalanche size distribution, we can use the mean
avalanche size 〈N〉 as the characteristic parameter. With
this parameter we study the dependence of the clogging
on the size ratio φ =D/d. Following the former analogy
with the case of silos, the dependence of 〈N〉 on φ can be
fitted by the expression [10]:
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TABLE 1. Fitting parameters of the
experimental data using Eq. 3.

φ50% φ95%

A 27±5 3±1
γ 5.6±0.4 5.5±0.8
φc 6.8±0.1 4.7±0.1

〈N〉= A
(φc −φ)γ

(3)

where A, γ and φc are fitting parameters. This expres-
sion assumes the existence of a critical radius φc beyond
which the clogging probability becomes negligible. In
Fig. 3, we display the experimental data of 〈N〉 versus
φ . The two different sets of data correspond to the two
different values of φ obtained for each one of the charac-
teristic particle sizes used (d50% and d95%). In both cas-
es the experimental data are well fitted by equation 3.
The values of the fitting parameters are summarized in
table 1.

We can see that the values of φc are consistent with
those reported in the literature [3, 4, 5, 6]. Indeed, the
value obtained for φ95% is very close to the recommenda-
tions of Kvapil [5]. In the case of φ50%, the value of φc is
larger as the characteristic size of the particles is smaller.
The values obtained for φc are only a first approximation
because the fitting parameters can be very sensitive to the
measured range of φ . Then, a better estimation of φc can
be obtained if larger values of φ are measured.

CONCLUSIONS

In this work we have studied the blockage probability
during the flow of a granular material along a pipe.
Due to the resemblance to the silo clogging problem,
we have addressed the study with a similar procedure.
The results show that the exponential distribution of the
avalanche sizes is also present in this geometry. Then, the
probability of clogging can be characterized by the mean
avalanche size and a critical value of the ratio between
the pipe diameter and the particles can be estimated. The
value obtained for this critical size is close to the one
obtained for spherical grains in a flat bottomed silo, but
this could be a mere coincidence. Indeed, one may expect
that clogging in a vertical pipe is more difficult than in
a bottleneck. But at the same time, it seems clear that
faceted particles as the ones used here should lead to
clogging more easily than spherical ones.

In any case the results reported in this manuscript re-
veal that arching in granular materials can be analyzed
by similar methods regardless of the system geometry.
For this reason, the analysis of flow rate intermittencies

-which have been reported to be strongly related to clog-
ging in silos [14]- seems the natural step forward. Finally,
from a practical point of view, the results obtained here
are the first important attempt to predict safety working
conditions for the the diameter of ore passes in mining
guaranteeing complete absence of clogging events.
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