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We characterize the structure of simulated two-dimensional granular packings
using concepts from complex networks theory. The packings are generated by
a simulated tapping protocol, which allows us to obtain states in mechanical
equilibrium in a wide range of densities. We show that our characterization method
is able to discriminate non-equivalent states that have the same density. We do this
by examining differences in the topological structure of the contact network of
the packings. In particular, we find that the polygons of the network are specially
sensitive probes for the contact structure. Additionally, we compare the network
properties obtained in two different scenarios: the tapped and a compressed
system.
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1. Introduction

The study of packings has enjoyed a long history both in physics and mathematics [1].
However, most of the interest has been traditionally centered around ordered structures
such as stacks of cannonballs and the perfection of the honeycomb. Disordered packings
have atracted real interest only rather recently. One can consider that this starts with the
work of Bernal [2], who developed a model for the structure of fluids by considering a
random packing of spheres, having a density of around 0.64. This density has been found to
be the highest attainable in a random packing by a number of experimental techniques and
computer simulations [3], thus making the Bernal packing a well-defined bound (known as
random close packing), at least empirically. The debate of the fundamental significance of
this density is still very alive.

In the present work, we study a two-dimensional analogue of the Bernal packing,
i.e. disordered packings of disks in mechanical equilibrium. We focus on the properties
of steady-state configurations generated by a simulated tapping protocol: a bed of grains
inside a container which is subjected to vertical pulsed agitation, allowing the grains to relax
between successive excitations. By tuning the dimensionless vertical acceleration � of the
shaking, we can explore different states of mechanical equilibrium. This situation has
been widely studied; experimentally [4–7,9,10], by means of simulations [8–11], and
theoretically [12].

*Corresponding author. Email: roberto.arevaloturnes@spin.cnr.it

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

av
ar

ra
] 

at
 0

2:
02

 0
7 

Ju
ne

 2
01

3 



2 R. Arévalo et al.

The system we propose to study plays a central role in the theoretical approach to granular
media. The packings obtained are reacheable from one another [9], and thus fall within the
scope of Edwards’ theory of granular materials in mechanical equilibrium. This theory was
first proposed by Edwards and Oakeshott [12] in formal analogy with the statistical theory
that underlies thermodynamics. Initially, Edwards’ theory was developed using only the
number of grains N and the volume V of the pack (or equivalently, the packing fraction
φ) to characterize the macroscopic states. However, it has been recently suggested that the
so-called N V ensemble should be extended, and take into account the stress propagation
in the system to achieve a complete description of a granular packing [13–18].

Recent experiments and simulations [9,10,19] have shown that, when a layer of grains
is tapped, the steady-state packing fraction φ is not a monotonic function of the excitation
intensity. Instead, a minimum packing fraction φmin is achieved at a certain intensity �min.
Beyond this value, the packing fraction increases again. This non-monotonic behaviour
implies that steady states with equal average packing fractions can be reached with very
different tap intensities. Then, the question of whether these states are statistically equivalent
or not naturally arises. This question has been thoroughly studied by means of simulations
in Refs. [9,10] where it is found that the force moment tensor � increases monotonically
with �. Hence, it is concluded that states at both sides of the minimum are not equivalent,
and that � is a suitable candidate to complete the variables that describe a granular system
at equilibrium at the macroscopic level.

Provided that � is revealed to be able to distinguish steady states of equal φ, one would
like to explore what other descriptors would be also valid to differentiate configurations
which are not discernible by φ. Since the external stress applied to the system is equilibrated
exclusively by contacts, it seems reasonable to think in the properties of the contact network.
We can then use the concepts and tools of complex networks [20] to analyse the properties of
the contact structure. These will be used to evaluate whether there is any network property
that allows a clear distinction between states with the same φ. At this point, let us note that
any static granular system can be considered in terms of nodes (the grains) and edges (the
contacts between grains). This approach has been recently applied to address a wide variety
of granular phenomena such as porosity [21], force distribution [22], rheology [23], signal
propagation [24] and jamming transition [25,26].

The aim of the present work is to characterize the contact networks of the different
steady states of packings generated by tapping. We will demonstrate that states with the
same volume obtained with different tap intensities exhibit discernible contact structures,
rendering them non-equivalent.

2. Simulation and tapping protocol

We use soft-particle molecular dynamics simulations in 2D, in which static friction is im-
plemented through the usual Cundall–Strack model [27]. The details of the implementation
have been described elsewhere [28], and in the following we give the values of the interaction
parameters used in the present work. The friction coefficient is μ = 0.5, stiffness in the
normal direction of the contact kn = 105 mg/d, damping parameter in the normal direction
γn = 300 mg/d, stiffness in the tangential direction ks = 2

7 kn and the damping parameter in
the tangential direction γs = 200 mg/d. The integration time step is set to δ = 10−4

√
d/g.

The confining box (13.39d-wide and infinitely high) contains N = 512 monosized disks.
We choose a box size which is inconmensurate with the disc size to reduce crystallization.
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Philosophical Magazine 3

Figure 1. Mean packing fraction φ of the steady states as a function of the tap intensity �. The error
bars correspond to the standard error estimated as the standard deviation divided by the square root
of the number of configurations averaged (i.e.

√
500). The size of the error bars is similar to that of

the symbols.

At the same time, we find that this measure prevents the formation of a regular network of
contacts, in spite of the grains being monosized. Units are reduced with the diameter of the
disks, d , the disk mass, m, and the acceleration of gravity, g.

Tapping is simulated by moving the confining box in the vertical direction following
a half sine wave trajectory [A sin(2πνt)(1 − 	(2πνt − π))]. The excitation is applied
with a constant frequency ν = π/2(g/d)1/2, and hence it is solely controlled through the
amplitude, A. The tap is characterized by the dimensionless parameter � = A(2πν)2/g
although we would like to note that other parameters (like the adimensionless energy
supplied to the system [29]) have been reported to be more suitable. In order to decide when
the system has reached mechanical equilibrium, we implement a robust criterion based on
the stability of particle contacts [28]. Then, the packing fraction is calculated and a new tap
is applied to the sample. Packing fraction was calculated in a slab of the bed that covers 50%
of the height of the column and is centered with the center of mass of the system. Averages
were taken over 500 taps (configurations) after we ensure that the system has reached a
steady state for each value of �. In particular, we discard the 500 initial configurations in
order to avoid any transient. By assuming that the values for the packing fraction obtained at
each tap are normally distributed, we estimate the uncertainty of the mean packing fraction
by calculating the upper and lower limits for a 95% confidence interval (we will apply the
same criterion for all the magnitudes introduced in the next sections). Using this protocol,
we obtain the curve of mean packing fraction φ in the steady state as a function of �

(Figure 1). At low values of �, increasing the intensity of the taps leads to a decrease in
the packing fraction. Then, beyond a certain value �min, this tendency is reversed and the
density increases again up to values slightly below the ones obtained at low excitations. This
qualitative behaviour is independent of the frequency ν of the taps, although the position
of the minimum is shifted to higher values of � when ν is increased [10].

3. Structure of the contact network

We now proceed to analyse the structure of the contact network of the tapped packings. It
will be shown that the topology of the contacts allows to distinguish states with the same
packing fraction at both sides of the minimum without computing the forces.
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4 R. Arévalo et al.

The network is readily defined by taking every grain as a node and every contact as
an edge (Figure 2). Note that, due to the gravity, in our samples there are no rattlers, i.e.
particles without any contact. Thus, there is no ambiguity as to whether or not a grain
participates in stress transmission. Once the graph is defined, the following properties [30]
are computed: (a) the mean shortest distance (or mean topological distance) 〈l〉 between
two given nodes measured in number of edges; (b) the diameter D of the network, which
is the largest topological distance in the graph; and (c) the degree of the network 〈k〉 which
is equivalent to the average contact number per grain Z used in the granular community.
In addition, we measure the populations of polygons. These are closed loops of contacts
around an empty void, and their size is measured in number of edges. In the following, we
term these empty closed loops simply as triangles, squares, pentagons and so on. Polygons
similar to the ones considered in this work were introduced in [31] where it was shown
that odd loops of contacts are responsible for the rigidity of granular samples due to the
frustration of rotations they introduce in the system.

In Figure 3(a)–(c) we report the behaviour of 〈l〉, D and 〈k〉 as functions of the tapping
intensity, �. The shape of the curves correlates with that of the packing fraction in Figure 1.
At low tapping intensities, both 〈l〉 and D increase with �, while 〈k〉 decreases. This
corresponds to a process of disconnection of the network in which links are removed to
allow for an increase of porosity. Topologically, the paths among nodes are modified in a
way such that grains become more separated. Trends are reversed beyond a point around
� � 4.0, which corresponds to the minimum packing fraction. From this point, the network
is increasingly connected as revealed by the increase of 〈k〉. As a result, the distances
between grains and the average diameter of the network tend to values similar to those
obtained for low tapping intensities.

In Figure 3(d)–(f) the values of 〈l〉, D and 〈k〉 are reported as functions of the packing
fraction φ. These plots show the existence of two separated branches, one before the
minimum and another after this point. Hence, the topology of the contact network is actually
different at both sides of the minimum density, and these descriptors allow to discriminate
different mechanical equilibrium states that have the same packing fraction. Note however

Figure 2. Part of one of the deposits analyzed. The left panel shows the contact network, the right
panel the force network for f ∗ = 0.4. In dark grey, edges joining the centers of grains in contact.
The width of the edges is proportional to the corresponding normal force. Different loops (triangles,
squares, pentagons and hexagons) can be observed.
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Philosophical Magazine 5

(a) (d)

(b) (e)

(c) (f)

Figure 3. Average shortest distance 〈l〉, average diameter D and average connectivity 〈k〉 as functions
of the tap intensity � (a)–(c), and as functions of the mean packing fraction φ (d)–(f). The arrows
indicate the direction of increasing �.

that this distinction relies on a high accuracy of the data, since the relative differences in
〈l〉, D and 〈k〉 between states with the same φ are very small.

The populations of contact loops (polygons) of the network with respect to � are shown
in left column of Figure 4. According to the data, the polygons may be classified into two
categories: small polygons, comprised by triangles and squares; and and big polygons,
comprised by pentagons and heptagons (see below for the case of hexagons). For low
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6 R. Arévalo et al.

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 4. The populations of polygons defined in the text as a function of the tap intensity (a)–(e), and
as a function of the mean packing fraction (f)–(j). The arrows indicate the direction of increasing �.
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Philosophical Magazine 7

tapping intensities, the number of small polygons decreases upon increasing �, while the
number of big polygons increases. Beyond the point of minimum packing fraction, the
trends are reversed; small polygons increase their populations with �, while the number of
big polygons is reduced. Hexagons do not neatly fit in either category due to its monotonic
behaviour with respect to �. This is a unique feature which has not been observed in any
other descriptor – neither geometrical nor topological – considered so far. We speculate that
this particular behaviour of the number of hexagons is strongly related with the boundary
effects. Most hexagons observed are located near the vertical walls of the container (as
exemplified by Figure 2). This phenomenon could be associated with the special columnar
arrangements of particles induced by the walls [32–34].

The behaviour of the number of polygons within the network can be easily linked with the
results obtained for the other topological properties. Indeed, increasing the number of small
polygons adds connectivity to the network. For example, if we consider a group of three
nodes connected through two edges, the distance is 〈l〉 = 2 and the average connectivity is
〈k〉 = 4/3. If a triangle is formed adding an extra edge, the distance reduces to 〈l〉 = 1 and
the connectivity rises to 〈k〉 = 2. For � < �min, increasing � leads to a reduction in the
number of small polygons and, hence, the network connectivity is reduced. For � > �min,
the behaviour reverses with large polygons being divided into smaller ones by new edges.

The population of polygons as a function of the density (see Figure 4(f)–(j)) reveals
– as the other topological descriptors in Figure 3 – the existence of two branches, one at
each side of the minimum. This behaviour is specially clear for the case of triangles and
hexagons. In brief, we can state that the branch of higher � is characterized by a higher
number of triangles and a lower number of hexagons, in comparison with the branch of
lower �. Let us stress that the relative differences between the two branches obtained for
the number of triangles and hexagons are quite important: 50% in the best case. This result
notably differs from the small differences between the two branches obtained for 〈l〉, D and
〈k〉. Hence, it can be stated that the population of polygons is a more suitable parameter to
distinguish between states with the same φ than other topological descriptors.

4. Force networks: Relation to compressed systems

Once the topological structure of the contact network has been analysed, it seems interesting
to define more general force networks. Those will be used to compare tapped systems with
compressed ones. To this end, let us introduce the parameter f ∗ = Fth/〈F〉, where 〈F〉 is
the average normal contact force and Fth is a threshold force. A force network is defined by
considering as edges only the contacts in which the normal force is larger than Fth. Thus,
for f ∗ = 0, the force network is identical to the contact network, while for larger values of
f ∗, diluted graphs with decreasing number of conections and nodes are obtained. Indeed,
when the parameter f ∗ is increased, the network disaggregates giving rise to the formation
of clusters: groups of nodes which are mutually linked but disconnected from other groups,
see Figure 2. The giant component (GC) of the network is defined as the cluster with largest
size, measured in number of nodes.

Due to gravity, in the tapped packings, there is a gradient of forces in the vertical
direction, with large forces being more common close to the base of the layer, and weaker
contacts concentrated close to the free surface. To avoid that this spatial inhomogeneity in
the force distribution affects our conclusions, the results concerning forces presented in this
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8 R. Arévalo et al.

(a) (d)

(b) (e)

(c) (f)

Figure 5. Average topological distance 〈l〉, GC CG and populations of polygons for compressed,
jammed networks at φ = 0.85 (left) and tapped networks (right).

and the next section are obtained measuring in a narrow slab of height 10d centered at a
distance 10d from the base.

Using this definition, the topological properties of the networks can be studied as
functions of the force threshold [22]. In Figure 5, a comparison is made between an
isotropically compressed system that is jammed [25] (left column) and the tapped samples
studied in this work (right column). From the data for the topological distance and the
giant component, a different qualitative behaviour is revealed for both types of networks.
The compressed system shows a sharp transition for a force approximately equal to the
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Philosophical Magazine 9

average, f ∗ � 1. For f ∗ ≥ 1, the topological distance and the GC are essentially zero,
while, for f ∗ ≤ 1, they jump to values close to those corresponding to the contact network.
This transition takes place in a very narrow range of f ∗. In contrast, the corresponding
magnitudes in tapped systems behave smoothly in all the range of f ∗ values. The GC
grows monotonically when f ∗ is reduced, and shows no plateau at small forces. The
topological distance shows a peak around f ∗ � 1.5 for low densities, and another at
f ∗ � 1 for the highest. However, the behaviour does not correspond to a sharp transition
as in the case of jammed compressed systems. The same pattern repeats in the results for
the population of polygons. In the case of compressed networks, all the populations decay
exponentially for f ∗ ≥ 1, while their behaviour is diverse for small values of the parameter.
The tapped networks show a monotonic decay in the populations of all the polygons. The
results presented in Figure 5(f) correspond to a packing fraction φ = 0.84 but similar results
are obtained for the other packing fractions analysed.

5. Contact forces

An additional hint to the distinct behaviour found in tapping and compression may be
obtained from the distribution of normal contact forces. In Figure 6(a), the normalized
distribution of contact forces is shown for the compressed system in two different situations.
For φ = 0.82, the system is not jammed as it is below the critical value of φ, and the
distribution of normal forces decreases monotonically. On the contrary, for φ = 0.85 –
when the system is jammed – the distribution shows a maximum around a force equal to
the average. In Figure 6(b) the corresponding force distributions are presented for tapped
systems. Interestingly, the curves are monotonous for every packing density. The emergence
of a peak in the force distribution was recognized in [35] as a signature of the development
of a yield stress and, hence, the transition to a jammed state. According to this, the tapped
samples are not jammed: they would deform by the application of a shear stress. Note that
this difference in the internal state of the forces is also reflected in the topological properties
of the diluted graphs displayed in Section 4.

(a) (b)

Figure 6. Normalized histogram of the normal contact forces for all the contacts. The variable fn =
Fn/ < Fn > is the normal contact force normalized by the average. (a) Results for a compressed
system before (φ = 0.82) and after jamming (φ = 0.85). (b) Results for the packing states reached
by tapping. Note that the values of packing fraction are shown in the caption in order of increasing �.
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10 R. Arévalo et al.

Figure 7. Normal force averaged over all the contacts of the polygons vs. the size of the polygons. As
in previous figures, the values of packing fraction are shown in the caption in order of increasing �.

Another suggestive result observed from Figure 6(b) is that the histograms for the lowest
densities show a fairly exponential decay. By contrast, an enhancement of large forces is
observed for high densities. This enhancement is observed for packings obtained both at
low and high �.

Let us now further analyse the information on the contact forces of the mechanical
equilibrium states obtained by tapping. In Figure 7 we show the average value of the
normal force in each type of polygon and for every value of φ. The general trend is that
the force increases with the number of sides of the polygon. The fact that small polygons
in the network allocate smaller forces than big polygons was already observed for the
compressed system [25,26].

An intuitive explanation for the presence of small forces in the small polygons can be
borrowed from Radjai et al. [36] who proposed that the network of contacts in a granular
packing is composed of two subnetworks: a weak one formed by links carrying forces
smaller than the average and another strong constituted by links carrying forces above the
average. Our work suggests that for the two scenarios analysed the filamentary structure
mainly carries large forces whereas the polygonal structure allocates most of the weak
forces.

In granular systems, the occurrence of force chains is related to the ability of a granular
sample to resist the external loads. However, it has been pointed out that an additional
ingredient is needed, given that a chain of disks or spheres is prone to buckle under
longitudinal load. It has been suggested [25,37] that the required stability can be provided
by the triangles of the network. Effectively, triangles are natural units of rigidity due to the
frustration of rotations and their minimal character (smallest loops).

6. Conclusions

We have studied the contact network structure of the steady states reached by a granular
layer when submitted to vertical tapping. It has been recently shown [9] that the volume
fraction of the system is not a monotonic function of the tap amplitude and that an extra
variable is necessary to univocally identify each steady state of the system [10].

In this work, we have implemented a series of topological measurements based on the
contact network of the resulting packings. This approach allows us to distinguish between

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

av
ar

ra
] 

at
 0

2:
02

 0
7 

Ju
ne

 2
01

3 



Philosophical Magazine 11

states of equal packing fraction that are known to differ in the average moment tensor. The
suitability of a topological approach seems obvious as the interparticle contacts univocally
determine the stress transmission of each mechanical equilibrium state. In this sense, the
density or the number of nearest neighbours (defined by proximity rather than contact)
seems a less precise parameter which is unable to detect small changes in the sample. The
contact network, instead, will reflect such small changes, thus becoming a more suitable
parameter to reflect the state of the system.

Among all the topological properties studied, we have found that the family of polygonal
structures is the most sensitive to differentiate between states with the same packing fraction.
We speculate that the mesoscopic nature of polygons (they are based on contacts but also
extend and consider the neighbours of neighbours) allows them to capture information lost
in a purely local context.

The analysis of the diluted graphs obtained for different force thresholds puts in evidence
that the topology of the force networks is sensitive to the internal state of the force distri-
bution. The structure of the networks for compressed, jammed systems, in which a yield
stress has developed, shows sharp features that are absent from the topological structure
of the tapped systems. This result is corroborated by the study of the force distribution
function in both cases. For the jammed compressed systems, a peak is observed in the
distribution signaling the development of yield stress. This peak is not observed, neither in
the non-jammed compressed systems, nor in the tapped packings.

We also show that the normal force averaged over all the contacts of a polygon increases
with the number of their nodes. Attributing this behaviour to the different roles of the
polygons in regard to rigidity presents itself as a natural possibility. Effectively, triangles
are minimal structures of rigidity due to the frustration of rotations. In this sense, our result
is in accord with the idea of Tordesillas et al. [37] who claim that these topological structures
provide a dual resistance to force chain buckling both by providing strong lateral support
to the force chains and by impeding rotation of the particles.

Finally, let us remark the connection of polygons with the packing fraction in the system.
Effectively, the natural role of polygons with more than three sides is the ‘regulation’
of packing fraction as, unlike triangles, these polygons enclose a void space. This is
consistent with the decrease of the number of triangles and the increase of pentagons and
heptagons when the packing fraction decreases. The decrease of squares and hexagons can
be understood as a trade to increase the population of the odd-sided large polygons.
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