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Abstract: In the present work we study the deterministic spin dynamics of two interacting anisotropic magnetic par-
ticles in the presence of an external magnetic field using the Landau-Lifshitz equation. The interaction
between particles is through the exchange energy. We study both conservative and dissipative cases. In
the first one, we characterize the dynamical behavior of the system by monitoring the Lyapunov exponents
and bifurcation diagrams. In particular, we explore the dependence of the largest Lyapunov exponent re-
spect to the magnitude of applied magnetic field and exchange constant. We find that the system presents
multiple transitions between regular and chaotic behaviors. We show that the dynamical phases display a
very complicated topology of intricately intermingled chaotic and regular regions. In the dissipative case, we
calculate the final saturation states as a function of the magnitude of the applied magnetic field, exchange
constant as well as the anisotropy constants.
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1. Introduction just to mention a few. In the last decades, new kinds of
molecules with interesting magnetic properties, in which
the magnetic moment can be positioned symmetrically in
different geometrical configurations, have been synthe-
sized [7]. A simple example s, for instance, unidimensional
ring shaped magnetic structures [8-11]. In some tempera-
ture regimes, the magnetic properties of these molecules
are generally well described by the classical Heisenberg

Molecular magnetism is becoming increasingly accessible
due to the remarkable development of experimental tech-
niques and have found technological applications diverse
areas such as quantum computing [1, 2], high-density in-

formation storage [3, 4] or magnetic refrigeration [5, 6] model with small anisotropy corrections [12, 13]. Hence, a

detailed study on the dynamical behavior of such magnetic
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systems becomes important for applications.

Standard approaches to study the dynamics of the magne-
tization reversal are based either on the Landau-Lifshitz
[14] or Landau-Lifshitz-Gilbert equations [15], being their
time scales the main difference between both approaches
for simple systems [15]. Nonlinear problems in magnetism
have already been studied in several cases. Recent devel-
opments in this field can be found in Refs. [16, 17]. These
models have been used in discrete [17-22] and continuous
magnetic systems [17, 23-30]. The dynamical behavior of
a few magnetic particles interacting through an exchange
interaction were studied in Refs. [31-34]. The authors
focus on the equilibrium spin-correlation function for dif-
ferent geometrical configurations. The problem of inter-
acting magnetic particles coupled by both short and long-
range interaction was analyzed in Refs. [35, 36], conclud-
ing that, due to the dipolar interaction, the total magne-
tization modulus is not a constant, but a fluctuating time
dependent function. Recently, a magnetic dimer has been
analyzed in a statistical mechanics context, taking into
account exchange, dipolar as well as the Dzyaloshinskii-
Moriya interactions [37]. Nevertheless, to our knowledge,
a parametric study on the dynamical behavior and the cor-
responding characterization of the chaotic states of two
magnetic particles never has been done.

Frequently, maps have been used to describe discrete-
time chaotic systems and phase diagrams for these models
[38-40], but the problem of building detailed phase dia-
grams for models ruled by a set of nonlinear differential
equations is computationally much harder and has been
much less investigated so far. However, diagrams record-
ing complex bifurcations and providing valuable insight
for a few of the lowest periods have been obtained in a
number of in-depth bifurcation studies using powerful con-
tinuation techniques [41-46]. Diagrams recording physi-
cally stable phases and discriminating simultaneously re-
gions of arbitrarily high periods and regions with chaotic
phases, remain essentially unexplored for continuous-time
autonomous and non- autonomous dynamical models. Re-
cently, complete phase diagrams have been published for
different continuous dynamical models of optically injected
semiconductor lasers [47], biophysical [48], and magnetism
[49-51]. A review of some of these results can be found in
literature Ref. [46], and an standard book of chaos can be
found in Ref. [52].

The aim of this paper is to analyze the influence of a
constant external magnetic field on a system of two in-
teracting anisotropic magnetic particles. The interaction
between the particles is through exchange energy. In par-
ticular, we study an applied field in the direction perpen-
dicular to the main anisotropy direction, which is called
the easy axis. Also, we focus on the effect of the relative

strength interaction between particles. We study both the
conservative and dissipative case. Here, we character-
ize the dynamical behavior by calculating numerically the
Lyapunov exponents and bifurcation diagrams. In the dis-
sipative case we calculate the final saturation states as
a function of the magnitude of applied magnetic field, the
exchange constant, and anisotropy constants. The paper
is organized in the following way. In Section 2, the the-
oretical model is briefly described. In Section 3, the nu-
merical results are provided and discussed. Finally, some
conclusions are drawn in Section 4

2. Theoretical model

Considering two magnetic particles and assuming that
each one can be represented by a magnetic monodomain
of magnetization M; with i = (1,2), the temporal evolu-
tion of the system can be modeled by the Landau- Lifshitz
equation

dM;

nlyl
= —|yM; x T, —
gt [vIM; x

M;

M x (M; x Ty), (1)

where, y is the gyromagnetic factor, which is associated
with the electron spin and whose numerical value is ap-
proximately given by |y| = |ye| to ~ 2.21x10°mA~1 s~
In the above equation, n denotes the dimensionless phe-
nomenological damping coefficient which is characteris-
tic for the material and whose typical value is of the or-
der 107* to 1073 in garnets, 1072 or larger in cobalt, in
nickel or in permalloy [17], and 10" in single magnetic
molecules [53]. The effective magnetic fields, I';, are given
by

M =H+ B (M- i) i, + M, (2)

with (i, k) = 1,2 such that i # k, where H is the external
magnetic field, B; measures the anisotropy along the n;
axis and J is the exchange coupling constant. Notice that
this for this special type of anisotropy, called uniaxial
anisotropy, the constants B; can be positive or negative
depending on the specific substance and sample shape in
use [54]. The exchange constant measures the strength
of the interaction between the two particles. Also, J can
take positive or negative values depending on the type of
interaction; for instance, for / < 0(J > 0) the coupling
will be antiferromagnetic (ferromagnetic). Let us assume
that the particles have same magnitude My = M, = Ms
and the same anisotropy axis ny = n; = n, such that n =
2. The external magnetic field H is assumed to be time-
independent and perpendicular to n; hence, without loss of
generality, it is fixed along the x-axis: mathbfH = H,X.



Laura M. Pérez, Omar J. Suarez, David Laroze, Hector L. Mancini

For zero damping, i.e. n = 0, Eq. (1) is conservative. In
fact, the conservative case has an intrinsic relationship
with the Nambu equation [55] governing the dynamics for
a triplet of canonical variables with two motion constants.
In the case of a single magnetic moment, the triplet of
canonical variables are given by M and the two motion
constants are the energy associated to [" and the normal-
ization stationary condition.

It is worth mentioning that in standard materials the
macrospin approximation (monodomain particles) is only
valid when surface anisotropy effects are not relevant [56].
For larger sizes of particles, non-uniform magnetic states
appear, like vortices in cobalt nanodots. In addition, the
shape of the nanoparticle plays an important role in the
macrospin approximation [57]. In the case of magnetic
molecules, this model is only valid in the semiclassical
approximation [12, 13], otherwise quantum effects should
be considered [58]. Finally, let us remark that due to the
nonlinear nature of the problem, analytical solutions can
be found only in particular cases; therefore, only numeri-
cal studies are possible.

3. Numerical results

In order to simplify and speed-up the integration of the
equations of motion we use dimensionless units, rewrit-

|

ting Eq. (1) in terms of the magnetization m; = M;/Ms
and time T = t|y|M; [17]
to mj| = 1. In order to get a better physical insight
into the problem, let us evaluate the scales introduced
here. Typical experimental values of Ms are, e.g. for
cobalt materials, Msco = 1.42x 10° A/m, for nickel ma-
terials Msjng = 4.8 x 10°A/m [17]; or for Mnq, crystals
Msiptngy) = 4.77x10% A/m [59]. Leading gyromagnetic fre-
quencies in the Gigahertz range |y|Msico) = 308 HGz,
|V|MS[Ni] ~ 106 HGz, and |y|/\/15[M,,12] ~ 10.5 HGz, re-
spectively. Hence the time scale (t = 1) is in the pi-
cosecond range, tyco = 1/(|v|Msico) = 3.2ps, tyny =
(lvIMsing) = 9.4ps, and tgun,) = 1/([VIMsivn,,) =
95.2 ps, respectively. Present-day technology is capable
of measuring pico- and femto-second processes. Indeed,
Beaurepaire et al. [60] were the first to observe the spin
dynamics at a time-scale below the picosecond scale in

This normalization leads

nickel [60]. More recently phenomena at a time-scale less
than 100 fs has been observed [61, 62].

To avoid numerical artifacts, it is suitable to solve the cor-
responding dimensionless Eq. (1) using a Cartesian rep-
resentation:

+n ((hx +]mka) mji + (hx + jmka) mi; — My (jmy,imy,k +Jmyim, i + Bimi[)) )

+ n (j (my,k (mi,‘ + mg_,- - my,i (mx,imx,k + mz,imz,k)) - hxmx,imy,i - Bimy,imii) ’

del-
=Mz, (-/my,k - Bimg,[) - jmy,imz,k
dr
dm,;
y,i
dr = - hxmz,[ + j (mx,imz,k - mx,kmz,i) + B[mx,[mz,i
dmZ,,-

:hxmy,i +/ (my,imx,k - mx,imy,k)

dt

)

+ n (Bimz,i (mfl + mj[) +j (mz,k (mfl + mj[) — My, (mx,imx,k + my,imy,k)) - hxmx,imz,i) ’

where h, = H,/Ms. We note that the second rows of
Egs. (3)-(5) are a consequence of the dissipative term
which contain quadratic and cubic nonlinearities. The
quadratic terms are produced by the external field, while
the cubic coefficients are proportional to the exchange
and the anisotropy constants. The conservative part, in
each equation, contains quadratic nonlinearities, and lin-
ear terms which are generated by the external field. Let

(

us remark that the system has at least two constants of
motion (the two individual modulus |m;|), and when n =0,
the magnetic energy is also conserved. In the dissipa-
tive case, the magnetic energy is not conserved, but it
reaches a stationary value after a transient. Given these
constrains our systems effective phase space dimension is
four. Moreover, we point out that this system has simple
homogeneous solutions: {my, my} = {£X&, £&}, such that
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Figure 1. (Color online) Phase diagram displaying the largest Lya-
punov exponent color coded as a function of the field am-
plitude h, and the exchange coupling constant J for two
different levels of resolutions. The fixed parameters are
B =0.1, B, = —0.1 and n = 0. In both cases the resolu-
tion is 10% x 10° Lyapunov exponents.

their stability depends on the control parameters [37].

From the numerical point of view, the integration of
Egs. (3)-(5) has been performed using a standard fourth
order Runge-Kutta integration scheme with a fixed time
step dt = 0.01 that ensures a precision of 1078 on the
magnetization field. In the next subsections we analyze
conservative and dissipative regimes respectively.

3.1. Conservative regime

In this subsection we first analyze the dynamics of
Egs. (3)-(5) when the dissipation is zero, n = 0. These
equations can have different types of behaviors, from reg-
ular to chaotic. One interesting case, in which the system
has an analytical solution, is when the anisotropies are
null, this means By = B, = 0. Indeed, the total magneti-

zation S = my + m; satisfies

ds
4. =-Sxh, (6)

which is the equation of a single magnetic moment in the
presence of an applied field and its solutions is

S,(0) 0
S(r) = 0 + | S,(0) | cos(h,T)
0 5.(0) ,
0 )
+ S.,(0) sin (hyT),
_Sy(o)

where S;(0) are the initial conditions throughout indi-
vidual modulus constrains. Also, when the system is
anisotropic (8; # 0) the only possible analytical solu-
tions are when the particles are decoupled / = 0. In such
case solutions are in the form of Elliptic functions [17].
To characterize the dynamics of Egs. (3)-(5) we first eval-
uate the Lyapunov exponents (LEs) [63]. This method con-
sists of quantifying the divergence between two initially
close trajectories. The measure of the exponential diver-
gence in phase space is given by the LEs. They are de-
noted by {A;}. Let us recall that one has as many LEs as
phase space dimensions within the dynamical system [63].
They can be ordered in descending form, from the largest
to the smallest: Ay > A; > ... > An. The first exponent is
the largest Lyapunov exponent (LLE). Here we deal with
the non-dissipative regime, and for these types of sys-
tems the LEs come in pairs (A;, An—i+1) such that their
sum is equal to zero and at least two LEs are equal to
zero. Here, we explore the dependence of the LLE on the
different control parameters of the system. One can, e.g,,
draw two dimensional maps illustrating the magnitude of
the LLE as a function of two parameters. This permits to
determine the parameter ranges that lead to chaotic dy-
namics, i.e. LLE positive, and those showing regular (pe-
riodic or quasi-periodic) dynamics, LLE zero or negative.
In addition, following a technique explained in Ref. [46],
we use an iterative zoom resolution process to investigate
further the dependence of the dynamics upon very small
variations of the system parameters. This technique is
generally used for studying dynamical systems that con-
tain chaotic phases with highly complicated and interest-
ing boundary topologies, e.g., curves where networks of
stable islands of reqular oscillations with ever-increasing
periodicity accumulate systematically.

The LEs are calculated for a time span of 7 = 32768 after
an initial transient time of T = 1024. The Gram- Schmidt
orthogonalization process is performed after every ot = 1.
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Figure 2. (Color online) Phase diagram displaying the largest Lya-
punov exponent color coded as a function of the field am-
plitude h, and the exchange coupling constant J for two
different levels of resolutions. The fixed parameters are
B1 =0.1, B, = 0.1 and n = 0. In both cases the resolution
is 10° x 103 Lyapunov exponents.

The error E in the evaluation of the LEs has been checked
by using E = o (A1) / max (A1), where g(Ay) is the standard
deviation of the maximum positive LE. In all cases studied
here E is of the order of 1%, which is sufficiently small for
the purpose of the present analysis.

We note that, there are other methods of quantifying the
non-periodic behavior of a dynamical system such as the
Fourier spectrum, Poincaré sections, and correlation func-
tions [16, 17, 21]. Also, bifurcation diagrams of magneti-
zation components have been employed in several articles
[18, 19, 22].

Figures 1 and 2 show colored code phase diagrams of
the LLE as a function of / and h, for different and
equal values of the anisotropy constants, respectively. In
both cases their absolute values are the same, such that
Bi = B> = 0.1. The left frames show a wide range of
the parameters, whereas the right frames show a specific
zoom of the corresponding left frame. The zone of the
zoom is denoted by a black box. We can observe that

(a)0.025
0020
_0015
B 0.010
0.005

-04 -0.2 0.0 0.2 0.4

§ 02

-0.2

-04 —d.2 0.0 02 04

Figure 3. LLE and bifurcation diagrams of m, 1 and m, , as a function
of the field amplitude h,. The fixed parameters are: | =
—0.2,1=01,8,=01and n=0.

the anisotropy energy plays an important role since the
diagrams are completely different.

For different anisotropies (Fig. 1) when the exchange cou-
pling constant is positive (J/ > 0) the system is always in
chaotic regimes, while for negative values of J, multiple
transitions between reqular and chaotic regimes appear.
These transitions can be observed with a best resolution
in the right frame of Fig. 1, in which complex patterns in
the LLE diagram appear.

Figure 2 shows the LLE as a function of h, and J at equal
anisotropies constants. We can observe that when J is
negative the system behaves almost regular except by four
plumes located symmetrically respect to h,. For positive
values of J the system is in chaotic regimes except for small
region when the values of h,. To quantify the dynamics
in this region a zoom is shown in the right frame.

In order to investigate in more detail different types of
transitions between regular to chaotic behavior we an-
alyze a vertical cross section of Fig. 2 in the range
—04 < h, < 04 at / = —0.2. The LLE and the bi-
furcation diagrams of m,; and m,, as a function of h,
are presented in Fig. 3(a), Fig. 3(b) and Fig. 3(c). We
observe that the system starts in a g-periodic state and
makes an abrupt transition to a chaotic behavior. Above
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Figure 4, x-component of m; as a function of time at g, = —0.1

(top) and B, = 0.1 (bottom). The dashed and continues
line represent m, 1 and m, », respectively. The dot-dashed
line depicts the modulus of my. The fixed parameters are
hy=01,/=-01,8 =01and =5 x 10~*.

that, alternating reqular and chaotic behaviors are found
while increasing the parameter h,. For large values of
hy the system becomes reqular. Finally, we observe that
there is a correspondence between both x-components as
shown in our bifurcation diagrams.

3.2. Dissipative regime

In this subsection we analyze the case of a dissipative
system, n # 0. The values of the damping coefficient

J

—(hx+Hn  —h.—J+ B
he+J  (=hi—J+Bi)n
In J
—J In

The eigenvalues of the last matrix, o, are obtained by the
roots of the secular equation:

U4+G3U3+0202+G102+00 =0, (12)

in molecular magnetism are small, hence we fix it to
n=5x 10~*. In this case, the common solutions are the
stationary ones and reach a constant value after a tran-
sient, as shown in Figure 4. This final stationary state
is strongly dependent on the parameter values. Indeed,
the magnetization of both particles can go to the same
value or not, as it is displayed in the left frame of Fig.
4. The type of transient can be reqular (like the classi-
cal damped harmonic oscillations) or chaotic, depending
of the corresponding state of the non- dissipative case.
The characteristic decay rate can be elucidated from lin-
ear analysis. To estimate the decay rate, we start with
an homogenous solution of the system m; = m; = % when
h, > 0. According to the magnetization conservation con-
dition, we have m,; = /1 — (mjj + m;j). Then for the
small deviations the component along the % axis can be
expressed as:

Hence, using the standard linear analysis [64] the system

reads:

d .
Zj" = by + )y + (B — hy— Iy + iy g+ S,
(9)

dm,;
5{/ = (hy + )y, + (s + ] — By — Iy + nm s,

(10)
where all the © (m%,) terms of order n > 2 have been
dismissed. Therefore, the linear system is characterized
by the matrix

In J
—J In
1"
Che+ D —he— 1+, 1
he+J  (=h«—J+B)n
[
where aj, in weakly dissipative regimes, are ap-

proximately given by a3 = n(4h, + J) — ),
a; = 202 + 4)hy + J) — E(hy + J), a1 =
0 (4h3 + 3h2(4) — £) + 2h, (42 = 3/ + 1) — 2JUT — ),
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Figure 5. (Color online) Phase diagram showing the saturation value
of my (top) and m,, (bottom) as a function of h, and J.
The fixed parameters are: By = 0.1, B = —0.1 andnp =
5x 10~

ap = hyhy + 2))(h?+h(2)—Z)—JE+T1) with
¥ =By + By and 1 = B1B,. In general, the eigenvalues
are complex functions, ¢ = or + 1oy = —p + 1Q, such
that p is the growth factor of the perturbation and Q
its frequency. Using the inverse of the growth factor
one can calculate the characteristic rate decay, denoted
here by 7.. Since, the equation for o is a fourth order
one a close form of 7. is difficult to obtain analytically
and it must be computed numerically. Nevertheless,
as a first approximation the characteristic rate de-
cay is 7. = 4/[(4(hy +J)—X)n. When J to0, then
B1 — B> — —|B| is reduced to . — 2/[(|B| + 2hy) n],
which has the same structure that was previously
obtained in Ref. [24-29]. In the decoupled system,
when B is positive gr becomes positive for B > 2h,
producing a linear instability. In our case with J # 0,
when one of the anisotropy constant has different sign
the solution always decays if / > 0 and if they have
the same sign the condition h, > —/ + L/4 guarantees

2 0 1 2
B;

2 , 1
0.8
] 1B 06
0.4
. 0.2

A0 F 1 o
02
-1 L 04
06
2 : 0.8

2 | 2

0
B;

Figure 6. (Color online) Phase diagram showing the saturation value
of m, (top) and m,, (bottom) as a function of By and B;.
The fixed parameters are: h, = 0.1, / = —0.1 and n =
5 x 10~*. The dashed line is a fit given by Eq. (13) in the
text.

that system does not suffer a linear instability. Let us
now to describe how the dynamic-saturation-value of the
magnetization, m,; = m,; (T — 00), changes with the
control parameters. Figure 5 shows two diagrams of m,
and m,, as a function of the external field, h,, and the
exchange constant, J. Each point in this diagram has
been numerically calculated with sufficient integration
time to avoid transients (r > 10%) and with random
initial conditions (ICs) on the spheres |m|; = 1 and
|mz| =1 in order to obtain results irrespective of the ICs.
We observe that when the coupling constant is positive
(/ > 0), the magnetization of both particles tends to (£)X,
depending on the direction of the magnetic field h,. Only
in the interface close to h, ~ 0 the magnetization suffers
perturbations respect to the x-axis. On the other hand,
for / < 0, only when h, is larger than the unity (|h,| > 1),
the magnetizations my and bfm, are oriented along the
external field; otherwise, they are oriented in other axes
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which depend on the value of / and are not correlated.
Furthermore, we analyze the anisotropy effects on
dynamic-saturation-values. Figure 6 shows two diagrams
of m,, and i, as a function of the anisotropy con-
stants By and B, at negative values of / and small fields,
h, = 0.1. This is the zone of the previous figure when the
magnetization of particle one is not correlated with the
magnetization of particle two. We observe that in the in-
termediate region the values of i, and i, are in anti-
phase, such that the anti-symmetry line is the diagonal
B1 = B>. Moreover, below the curve

B, = atanh (bBy + ) B € (—2.0,0) (13)
27 ] tanh ' (BiJa—c) /b B € (0,0.378)
both i, and m,, are zero when (a,b,c) =

(—0.3845,1.3477, —0.0442), . In fact, in this range the
final magnetization states are oriented along the z-axis
(M1 = m,, = 1), which is the anisotropy axis. Also, we
can observe that close to 8y = 1 and 8, 2 1 in the left

frame of Fig. 6 there is an isolated cumulus of points in
which , , # 0 with small amplitude.

4. Final remarks

In this work we studied a classical magnetic dimer in the
presence of an external applied field, taking into account
anisotropy self-energy and exchange interaction in the
Landau-Lifshitz approach. This model can be an inter-
esting tool to describe magnetic molecules in the semi-
classical approximation [12, 13], or two interacting mag-
netic particles in the macrospin approximation when sur-
face energies can be neglected [56]. We have analyzed
both, conservative and dissipative regimes. In the con-
servative case, the system has been mainly characterized
through Lyapunov exponents as a function of the param-
eters and intensive numerical simulations, computing 10°
LLE in each two-dimension diagram, have been performed
with iterative zooms in the relevant regions. We found
that for positive couplings, the system is chaotic in a wide
range of magnetic field if the anisotropy constants are
equal. This issue is not the same when these constants
have the same magnitude but differ in signs, where reqular
regimes appear for small fields. When the exchange con-
stant is negative, the scenario is completely different. For
equal anisotropies the system exhibit reqular behaviors for
almost all range of magnetic fields, except in four chaotic
plume-Llike regions located in a symmetric way respect to
the field. Meanwhile, for different sign of the anisotropy
constant multiple transitions between regular to chaotic
states are found. These Lyapunov diagrams reveal com-
plex patterns. In the case of dissipative dynamics we have

numerically calculated the final stationary solution after
a transient. At fixed anisotropy, we have observed that
the magnetization of both is oriented along the field when
the exchange constant is positive. For negative couplings
other orientations are finally reached when |h,| < 1. In
this range of fields, for negative exchange when the the
anisotropies are varied, there is a region were the mag-
netic moment of the particles are in anti-phase. Finally,
we remark that due to the interaction between particles,
different types of synchronizations can be observed. Fur-
ther research in this direction will be presented in future
works.
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