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It is proved that, for a wide class of topological abelian groups (locally quasi-
convex groups for which the canonical evaluation from the group into its Pontryagin 
bidual group is onto) the arc-component of the group is exactly the union of the 
one-parameter subgroups. We also prove that for metrizable separable locally arc-
connected reflexive groups, the exponential map from the Lie algebra into the group 
is open.
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Some properties of one-parameter subgroups of locally compact groups have been known for a long time. 
In a paper published in 1967 Rickert proved that in a compact arc-connected group every point lies on a 

one-parameter subgroup [16]. Previously Gleason had shown in 1950 that every finite dimensional, locally 

compact group contains a one-parameter subgroup [10]. There are also examples of topological groups 
without nontrivial one-parameter subgroups; this is the case for instance of the subgroup of integer-valued 

functions of the Hilbert space L2[0, 1] [1].
For topological abelian groups which are k-spaces, the arc-component of the dual group is the union of 

its one-parameter subgroups. This result published by Nickolas in 1977, remained for some years the only 

available piece of information outside the class of locally compact groups. Recently it was proved in [1] that 
the same is true for a much wider class of topological groups.
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In this paper we go deeper into the study of one-parameter subgroups of topological abelian groups. We 
take as references the papers [1,2,15] and the book by Hofmann and Morris [12] which presents a wide range 
of properties of the one-parameter subgroups of locally compact abelian groups.

In order to do that we use two ingredients: on the one hand Pontryagin duality techniques and on the 
other the relation between CHom(R, G) and the group G given by the evaluation mapping

CHom(R, G) −→ G, ϕ �−→ ϕ(1)

The vector space CHom(R, G) endowed with the compact open topology is called the Lie algebra of the 
topological group G and denoted by L(G) in analogy with the classical theory of Lie groups. In that case the 
evaluation mapping is continuous and it is called the exponential function (expG). The elements of im expG

are those lying on one-parameter subgroups, and G is the union of its one-parameter subgroups if and only 
if expG is onto.

For a topological group G, we denote by Ga its arc-component.
The main results of the paper are:

Theorem 6. Let G be a Hausdorff locally quasi-convex topological abelian group for which the evaluation 
mapping from the group into its bidual group is onto. Then, im expG = Ga.

Theorem 11. If G is a metrizable separable reflexive topological abelian group which has an arc-connected 
neighborhood of eG, then the exponential mapping expG : L(G) −→ Ga is a quotient map.

Observe that if G is the additive topological group underlying a topological vector space E, then expG :
CHom(R, G) −→ G, ϕ �−→ ϕ(1) is a topological isomorphism and in that case all the topological and 
algebraic information about G is in CHom(R, G).

We will use Pontryagin duality theory, hence our topological groups need to be abelian. Pontryagin–van 
Kampen duality theorem for locally compact abelian groups (LCA groups) is a very deep result. It is the 
base of Abstract Harmonic Analysis and it allows to know the structure of LCA groups. This explains 
why a consistent Pontryagin–van Kampen duality theory has been developed for general topological abelian 
groups and why the abelian topological groups satisfying the Pontryagin–van Kampen duality, the so-called
reflexive groups, have received considerable attention from the late 40’s of the last century (see [8] for a 
survey on the subject).

For an abelian topological group G, the character group or dual group G∧ of G is defined by

G∧ := {χ : G → T : χ is a continuous homomorphism}

where T denotes the compact group of complex numbers of modulus 1. The elements of G∧ are called 
characters. We say that the group G has enough characters or that G is a MAP group if for any eG �= x ∈ G, 
there is some character ϕ ∈ G∧ such that ϕ(x) �= 1.

Endowed with the compact-open topology G∧ is an abelian Hausdorff group. The bidual group G∧∧ is 
(G∧)∧ and the canonical mapping in the bidual group is defined by:

αG : G → G∧∧, x �→ αG(x) : ϕ �→ ϕ(x).

The group G is called Pontryagin reflexive if αG is a topological isomorphism. For the sake of simplicity, 
we will use the term reflexive only. The famous Pontryagin–van Kampen theorem states that every locally 
compact abelian (LCA) group is reflexive.

Let f : G → E be a continuous homomorphism of topological groups. The dual mapping f∧ : E∧ → G∧

defined by (f∧(χ))(g) := (χ ◦ f)(g) is a continuous homomorphism.
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The annihilator of a subgroup H ⊂ G is defined as the subgroup H⊥ := {ϕ ∈ G∧: ϕ(H) = {1}}. If L is 
a subgroup of G∧, the inverse annihilator is defined by L⊥ := {g ∈ G: ϕ(g) = 1, ∀ϕ ∈ L}.

Annihilators are the particularizations for subgroups of the more general notion of polars of subsets. 
Namely, for A ⊂ G and B ⊂ G∧, the polar of A is A� := {ϕ ∈ G∧ : ϕ(A) ⊂ T+} and the inverse polar of B
is B� := {g ∈ G: ϕ(g) ∈ T+, ∀ϕ ∈ B}, where T+ := {z ∈ T : Re z ≥ 0}.

For a topological abelian group G, it is not difficult to prove that a set M ⊂ G∧ is equicontinuous if there 
exists a neighborhood U of the neutral element in G such that M ⊂ U�. Other standard facts in duality 
theory are: If U is a neighborhood of the neutral element of G, its polar is compact and the dual group 
G∧ is the union of all polars of neighborhoods of eG. The family {K� : K is a compact subset of G} is a 
neighborhood basis of the neutral element in G∧.

A subgroup H of a topological group G is said to be dually closed if, for every element x of G \H, there 
is a continuous character ϕ in G∧ such that ϕ(H) = {1} and ϕ(x) �= 1.

Reflexive groups lie in a wider class of groups, the so-called locally quasi-convex groups. Quasi-convexity 
was defined by Vilenkin as a sort of convexity for abelian topological groups inspired on the Hahn–Banach 
theorem for locally convex spaces.

A subset A of a topological group G is called quasi-convex if for every g ∈ G \ A, there is some ϕ ∈ A�

such that ϕ(g) /∈ T+.
It is easy to prove that for any subset A of a topological group G, A�� is a quasi-convex set. It will be 

called the quasi-convex hull of A since it is the smallest quasi-convex set that contains A. Obviously, A is 
quasi-convex iff A�� = A.

If A is a subgroup of G, A is quasi-convex if and only if A is dually closed. The abelian topological group 
G is said to be locally quasi-convex if it admits a neighborhood basis of eG formed by quasi-convex subsets. 
Dual groups are examples of locally quasi-convex groups. For locally quasi-convex groups the evaluation 
map αG is injective and open onto its image. A topological vector space E is locally convex if and only if 
in its additive structure it is a locally quasi-convex topological group (see [6, 2.4]).

By a real character (as opposed to a character) on an abelian topological group G it is commonly 
understood a continuous homomorphism from G into the reals R. The real characters on G constitute the 
vector space CHom(G, R). It is said that the group G has enough real characters if CHom(G, R) separates 
the points of G. We denote by CHomco(G, R) the group of real characters endowed with the compact open 
topology. We say that a character ϕ : G → T can be lifted to a real character, if there exists a real character 
f such that e2πif = ϕ. We denote by G∧

lift the subgroup of G∧ formed by the characters that can be lifted 
to a continuous real character.

Given a topological abelian group G, we denote by ω(G, G∧) the weak topology on G that is, the topology 
on G induced by the elements of G∧. This topology coincides with the Bohr topology.

On the other hand ω(G∧, G) denotes the topology on G∧ of pointwise convergence.
In a topological group G, the arc-components are homeomorphic to one another and it makes sense to 

refer to the arc-component of the neutral element Ga as the arc-component.
There are well known results about the arc-component of locally compact groups. Let G be an LCA 

group, Ga be its arc-component and G0 be its connected component.

1. Ga = im expG (see [12, 8.30]).
2. The arc-component Ga is dense in the connected component G0 (see [12, 7.71]).
3. The group G has enough real characters iff the dual group G∧ is connected (see [11, 24.35]).

What can be said about the arc-component in more general classes of groups? It is known that for 
topological abelian groups which are k-spaces, the arc-component of the dual group is exactly the union 
of its one-parameter subgroups (see [15]). It was proved recently that the same is true for a much wider 
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class of topological groups: groups satisfying the EAP condition. (A topological group G satisfies the EAP 
if every arc in G∧ is equicontinuous.) This property is introduced and studied for different groups in [1].

Next, we find new classes of groups for which Ga = im expG.
We start with a lemma that can be proved in a straightforward way.

Lemma 1. Let G be a Hausdorff topological abelian group, H be a subgroup of G and L a subgroup of G∧

then,
H is dense in the weak topology ω(G, G∧) iff H⊥ = {eG∧}.
L is dense in the pointwise topology ω(G∧, G) if L⊥ = {eG}. If G is a MAP group, the reverse implication 

is also true.

Lemma 2. Let G be a Hausdorff topological abelian group. If K is a compact subset of G, then αG(K) is an 
equicontinuous subset of G∧∧.

Proof. The polar set K� is a neighborhood of eG∧ for the compact open topology of G∧, then K�� is 
an equicontinuous subset of G∧∧. Moreover, αG(K��) = K��

⋂
αG(G). Therefore αG(K) ⊆ αG(K��) =

K��
⋂
αG(G) ⊆ K��. Since αG(K) is contained in an equicontinuous subset, it is itself equicontinuous. �

Proposition 3. Let G be a Hausdorff topological abelian group and γ : I → G be a continuous arc, then the 
mapping Φγ : G∧ × I → T defined by Φγ(χ, t) = χ(γ(t)) is continuous.

Proof. Take χ0 ∈ G∧ and t0 ∈ I. Let us see that Φγ is continuous at (χ0, t0). For n ∈ N, let us denote by Tn

the neighborhood of 1 in T, {e2πit : |t| ≤ 1
4n}. Fix n ∈ N; since the mapping χ0 ◦ γ : I → T is continuous, 

there exists Vt0 neighborhood of t0 in I such that χ0(γ(t))χ0(γ(t0)) ∈ T2n, for every t ∈ Vt0 .
On the other hand since γ(I) is a compact subset of G, by Lemma 2, αG(γ(I)) is equicontinuous at χ0

hence, there exists a neighborhood Uχ0 of χ0 in G∧ such that χ(γ(t))χ0(γ(t)) ∈ T2n for every t ∈ I and 
χ ∈ Uχ0 .

Therefore χ(γ(t))χ0(γ(t))χ0(γ(t))χ0(γ(t0)) ∈ T2nT2n ⊂ Tn for every t ∈ Vt0 and χ ∈ Uχ0 . This proves 
that Φγ is continuous at (χ0, t0). �
Proposition 4. Let G be a Hausdorff topological abelian group and Ga be its arc-component, then Ga ≤
α−1
G (G∧∧

lift).

Proof. Let x be an element in Ga, and let γ : I → G be a continuous mapping joining eG and x. Then, 
Φγ : G∧ × I → T defined by Φγ(χ, t) = χ(γ(t)) is continuous as we have seen in Proposition 3. Denote 
by ψ : G∧ × {0} → R the null real character. By the homotopy lifting property we can find a homotopy 
F : G∧× I → R such that p ◦F = Φγ and F |G∧×{0}= ψ. Now the unique path lifting property of p : R → T

allows us to show that ϕ : G∧ → R defined as the restriction of F to G∧ × {1} is a homomorphism and 
hence a continuous real character lifting αG(x): for all l ∈ G∧, p ◦ ϕ(l) = p ◦ F (l, 1) = Φγ(l, 1) = l(γ(1)) =
l(x) = αG(x)(l). �
Proposition 5. Let G be a Hausdorff locally quasi-convex topological abelian group for which αG is onto. 
Then, α−1

G (G∧∧
lift) ≤ im expG ≤ Ga.

Proof. Observe that im expG is arc-connected and so it is contained in Ga. Let x ∈ G be such that αG(x) ∈
G∧∧

lift and let α̃G(x) : G∧ → R be a continuous homomorphism such that p ◦ α̃G(x) = αG(x). Denote by 
S the topological isomorphism S : R → R∧, s → χs : χs(t) = e2πist. Since G is locally quasi-convex, 
the evaluation mapping αG is injective and open, so we can consider the homomorphism f ∈ CHom(R, G)
given by f = α−1

G ◦ (α̃G(x))∧ ◦ S. Let us see that f(1) = x. Observe first that (α̃G(x))∧(S(1)) = αG(x) [for 
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ψ ∈ G∧: (α̃G(x))∧(S(1))(ψ) = (χ1 ◦ α̃G(x))(ψ) = e2πiα̃G(x)(ψ) = (p ◦ α̃G(x))(ψ) = αG(x)(ψ)]. Therefore, 
f(1) = α−1

G ◦ (α̃G(x))∧(S(1)) = α−1
G (αG(x)) = x. �

The following theorem, obtained from the previous propositions, shows in particular that in an arc-
connected locally quasi-convex topological abelian group for which αG is onto, every point lies in a one-
parameter subgroup. The same was proved by Rickert in 1967 for compact arc-connected groups (see [16]).

Theorem 6. Let G be a Hausdorff locally quasi-convex topological abelian group for which αG is onto. Then, 
im expG = Ga = α−1

G (G∧∧
lift).

Some classes of Hausdorff locally quasi-convex topological abelian groups for which αG is onto are the 
following: reflexive groups, duals of pseudocompact groups, P -groups (see [8]), groups of continuous functions 
C(X, T) where X is a completely regular k-space (see [3, 14.8]) and the wide class of nuclear complete 
topological abelian groups [3, 21.5].

The class of nuclear groups was formally introduced by Banaszczyk in [6]. It is a class of topological groups 
embracing nuclear spaces and locally compact abelian groups (as natural generalizations of finite-dimensional 
vector spaces). The definition of nuclear groups is very technical, as could be expected from its virtue of 
joining together objects of such different classes. A nice survey on nuclear groups is also provided by L. 
Außenhofer in [4]. The following are important facts concerning the class of nuclear groups:

1. Nuclear groups are locally quasi-convex, [6, 8.5].
2. Products, subgroups and quotients of nuclear groups are again nuclear, [6, 7.5].
3. Every locally compact abelian group is nuclear, [6, 7.10].
4. Every closed subgroup of a nuclear topological group is dually closed [6, 8.6].
5. A nuclear locally convex space is a nuclear group, [6, 7.4]. Furthermore, if a topological vector space E

is a nuclear group, then it is a locally convex nuclear space, [6, 8.9].

Proposition 7. ([5, 1.4]) Let G be a Hausdorff locally quasi-convex topological abelian group for which αG

is continuous, then the mapping Φ0 : L(G) → CHomco(G∧, R∧) given by ϕ �→ ϕ∧: ϕ∧(χ) = χ ◦ ϕ is an 
embedding.

Proposition 8. Let G be a reflexive topological abelian group, then the mapping Φ0 : L(G) → CHomco(G∧, R∧)
given by ϕ �→ ϕ∧ is a topological isomorphism.

Proof. Using Proposition 7 we only need to check that Φ0 is onto: Let ψ : G∧ → R∧ be a continuous 
homomorphism and ϕ = α−1

G ◦ψ∧ ◦αR. Let us see that ϕ∧ = ψ or which is the same, that for every χ ∈ G∧, 
ϕ∧(χ) = χ ◦ ϕ = χ ◦ α−1

G ◦ ψ∧ ◦ αR = ψ(χ).
So, take t ∈ R, if x = (α−1

G ◦ ψ∧ ◦ αR)(t), then αG(x) = αR(t) ◦ ψ

χ(x) = αG(x)(χ) = (αR(t) ◦ ψ)(χ) = αR(t)(ψ(χ)) = ψ(χ)(t).

Therefore ϕ∧(χ)(t) = ψ(χ)(t), for all χ ∈ G∧ and t ∈ R, that is ϕ∧ = ψ. �
Corollary 9. Let G be a Hausdorff locally quasi-convex topological abelian group for which αG is continuous, 
then L(G) is topologically isomorphic to a subgroup of CHomco(G∧, R). Moreover, if G is reflexive then 
L(G) ∼= CHomco(G∧, R).

Proof. Take into account that S : R → R∧ given by S(t)(s) = e2πist is a topological isomorphism. �
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We recall now that some properties of the group G preserved by L(G) are

1. L(G) is Hausdorff, if the topological group G is Hausdorff.
2. L(G) is complete, if the topological group G is complete.
3. L(G) is a locally convex space, if the topological group G is a Hausdorff locally quasi-convex group (see 

[5, 1.2]).
4. L(G) is nuclear if the topological group G is nuclear (see [5, 2.6]).

Proposition 10. If G is a locally quasi-convex metrizable and separable topological abelian group,
CHomco(G∧, R) is metrizable complete and separable. The Lie algebra L(G) is also metrizable and sep-
arable, and it is complete if the topological group G is complete.

Proof. Since G is metrizable, G∧ is hemicompact and a k-space [7]. By the hemicompactness of G∧, 
CHomco(G∧, R) is metrizable and because G∧ is a k-space, CHomco(G∧, R) is complete. On the other 
hand since G is metrizable and separable it holds (see [9, 1.7]) that compact subsets of G∧ are metrizable. 
But for a hemicompact k-space X whose compact subsets are metrizable, Cco(X) is metrizable and separa-
ble (see [14] and [17]), hence CHomco(G∧, R) is metrizable separable and complete. Observe now that L(G)
is complete because G is complete and it is metrizable and separable because it is topologically isomorphic 
to a subgroup of CHomco(G∧, R). �
Remark. For torus groups TX where X is an arbitrary set, we may identify the exponential function with 
the canonical quotient map RX → TX , therefore, it is open. There are also compact connected groups which 
are not torus groups but for which the exponential function is open onto its image (see [13]). We next find 
other classes of abelian groups for which the corestriction expG : L(G) −→ Ga is open.

Theorem 11. If G is a metrizable separable reflexive topological abelian group which has an arc-connected 
neighborhood of eG, then the exponential mapping expG : L(G) −→ Ga is a quotient map.

Proof. By the above proposition, L(G) is metrizable complete and separable. On the other hand, since G is 
a locally quasi-convex topological group for which αG is onto, im expG = Ga. By hypothesis, Ga is an open 
subgroup of the group G, hence it is closed. Therefore Ga is metrizable complete. Since the exponential 
mapping is a continuous and onto homomorphism, by the open mapping theorem, it is open. �
Corollary 12. Let G be a metrizable separable reflexive topological group:

1. If G is locally arc-connected, then the exponential map expG : L(G) −→ Ga is a quotient map.
2. If G is arc-connected, then the exponential map expG : L(G) −→ G is a quotient map.
3. If the exponential map expG : L(G) −→ Ga is a quotient map and G has an arc-connected neighborhood 

of eG, then G is locally arc-connected.

Proof. 3. Since L(G) is a locally convex topological vector space it has arbitrarily small arc-connected 
neighborhoods of zero which are mapped onto open identity neighborhoods of Ga by expG. �

The following lemma shows that for a topological abelian group, to have enough real characters and to 
have enough characters that can be lifted, are equivalent properties.

Lemma 13. ([2, 2.1]) Let G be a topological abelian group and eG �= x ∈ G. The following assertions are 
equivalent:



M.J. Chasco / Topology and its Applications 185–186 (2015) 33–40 39
1. There exists a real character f such that f(x) �= 0.
2. There exists a character ϕ ∈ G∧

lift such that ϕ(x) �= 1.

Corollary 14. A Hausdorff topological abelian group G has enough real characters if and only if (G∧
lift)⊥ =

{eG}.

Theorem 15. ([1]) Let (G, τ) be an abelian Hausdorff satisfying EAP. Then

G∧
lift = im expG∧ = (G∧)a

Theorem 16. Let (G, τ) be an abelian Hausdorff group such that every arc in the character group is equicon-
tinuous. Consider the following conditions:

a) G has enough real characters.
b) (G∧)a is dense in G∧, with the pointwise convergence topology.

Then a) ⇒ b). If G is a MAP group, b) ⇒ a).

Proof. By Theorem 15, ((G∧)a)⊥ = (G∧
lift)⊥. If the group G has enough real characters (G∧

lift)⊥ is trivial 
and by Lemma 1, (G∧)a is dense in G∧ with the pointwise convergence topology. For the reverse implication 
take into account that for a MAP group G, (G∧)a dense in G∧ with the pointwise convergence topology, 
implies ((G∧)a)⊥ is trivial. �
Corollary 17. Let G be a locally quasi-convex topological abelian group such that αG is onto then,

1. Ga is ω(G, G∧)-dense iff G∧ has enough real characters.
2. G is arc-connected iff every character of G∧ can be lifted.

Proof. (1) Since Ga = α−1
G (G∧∧

lift) we have (Ga)⊥ = (α−1
G (G∧∧

lift))⊥ = (G∧∧
lift)⊥. By Lemma 1, Ga is 

ω(G, G∧)-dense iff (Ga)⊥ = {eG∧} and by Corollary 14, (G∧∧
lift)⊥ = {eG∧} iff G∧ has enough real char-

acters then: Ga is ω(G, G∧)-dense iff G∧ has enough real characters.
(2) Again by Theorem 6, Ga = G iff G∧∧

lift = G∧∧. �
Corollary 18. Let G be a locally quasi-convex topological abelian group with αG onto and such that closed 
subgroups are dually closed. If G∧ has enough real characters, then G is connected.

Proof. Having G∧ enough real characters the arc-component Ga of G is ω(G, G∧)-dense. Let G0 be the 
connected component of G. It is clear that Ga ⊂ G0 therefore G0 is ω(G, G∧)-dense. Since G0 is a closed 
subgroup of the group G, G0 is dually closed and therefore it is ω(G, G∧)-closed. Then G0 = G, that is: G
is connected. �
Examples. Nuclear complete topological abelian groups are locally quasi-convex topological abelian groups 
with αG onto and such that closed subgroups are dually closed. Therefore every nuclear complete topological 
group, such that its dual group, G∧ has enough real characters, is connected.

The previous results allows us to give an alternative proof for the following well known fact.

Corollary 19. Let G be an LCA group. Then G is connected iff G∧ has enough real characters.
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Proof. Observe that LCA groups are nuclear complete, so the if part is true. Let us prove the reverse 
implication. Since G is an LCA group, Ga is dense in G0. But G0 = G because G is connected, so Ga is 
dense and therefore ω(G, G∧)-dense in G. Therefore, by Corollary 17, G∧ has enough real characters. �
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