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Abstract We present a hybrid GPU–CPU implementa-
tion of an accurate discrete element model for a system of
ellipsoids. The ellipsoids have three translational degrees of
freedom, their rotational motion being described through
quaternions and the contact interaction between two ellip-
soids is described by a force which accounts for the elastic
and dissipative interactions. Further we combine the exact
derivation of contact points between ellipsoids (Wang et al.
in Computing 72(1–2):235–246, 2004) with the advantages
of the GPU-NVIDIA parallelization strategy (Owens et al. in
ComputGraph Forum26:80–113, 2007). This noveltymakes
the analytical algorithm computationally feasible when deal-
ing with several thousands of particles. As a benchmark, we
simulate a granular gas of frictionless ellipsoids identifying
a classical homogeneous cooling state for ellipsoids. For low
dissipative systems, the behavior of the granular temperature
indicates that the cooling dynamics is governed by the elon-
gation of the ellipsoids and the restitution coefficient. Our
outcomes comply with the statistical mechanical laws and
the results are in agreement with previous findings for hard
ellipsoids (Bereolos et al. in J Chem Phys 99:6087, 1993;
Villemot andTalbot inGranulMatter 14:91–97, 2012). Addi-
tionally, new insight is provided namely suggesting that the
mean field description of the cooling dynamics of elongated
particles is conditioned by the particle shape and the degree
of energy equipartition.
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1 Introduction

Computer simulations facilitate the mathematical modeling
of many systems in physics and engineering. In such numer-
ical algorithms the physical problem is often reduced to
a system of differential equations which cannot be solved
analytically [4]. Implementing these algorithms has a com-
putational time-cost that for many complex problems is not
feasible. Therefore, in recent years several parallelization
strategies have been developed [1,5,6].

One common option for parallelization is the so-called
message passing interface (MPI), which is a standard-
ized communication protocol which is used to coordinate
many processes mapped on different nodes. MPI provides
a language-specific syntax allowing the process to synchro-
nize and communicate [5]. Although MPI can produce good
benchmarks, there are huge differences between serial and
parallel implementation of the same algorithm, due to one has
to deal explicitly with the message passing. A more imme-
diate option is Open Multi-Processing (OpenMP), which is
an application program interface (API) consisting in a set of
compiler directives, libraries and environment variables that
notably improve the run-time benchmarks [6].

In the last years, graphics processing units (GPUs) have
experienced a huge increase in number of cores and flip-
flop rate to improve the rendering of more realistic video
games. Moreover, GPUs are also becoming a powerful tool
in many scientific projects because of its high computing
throughput and memory bandwidth [7]. In this way, general-
purpose computation ongraphics hardware (GPGPU) [1,8,9]
has become a promising alternative for parallel computing on
clusters or supercomputers.

One important field in physics where parallel computing
and efficient algorithms are required, due to its computational
demands, is granular matter. Discrete element modeling
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(DEM) is widely accepted as an effective method in address-
ing physical and engineering problems concerning dense
granular media [10]. Using DEM, particle shapes have
been numerically identified from digitized images [11], rep-
resented either by superquadrics [12], polygons [13–15],
ellipsoids [16–22], spheropolygons or spheropolyhedra [23]
or by clumps of disks or spheres [24]. Moreover, advanced
models that consider contact geometry and particle geometry
have been developed by combining DEMwith finite element
formulations [25].

Nevertheless, the main disadvantages of DEM algorithms
are themaximumnumber of particles and the computing time
of the simulation. When examining spherical particles the
contact search is the most time consuming part of the com-
putation. Moreover, the computing time in notably enhanced
when determining the interaction of non-spherical particles
like ellipsoids, whose mathematically rigorous treatment is
notably non-trivial [26,27].

In the past, exact methods of contact detection for ellip-
soids based on algebraic conditions have been proposed
[26,27]. However, those procedures generally involve the
solution of characteristic polynomial equations, which made
them infeasible for most applications, where thousands of
particles are modeled. Thus, to achieve fast execution time,
a number of approximated contact detection algorithms
have been developed [16–19,22]. For instance, intersection
strategies [16], curvature simplifications [17] and geometric
potential algorithms, have been introduced [19]. In general,
those approximations have captured interlocking, the resis-
tance to rolling; and have reproduced realistic statistics of
orientation and stress transmission.

In the present work, we present a step forward in the
development of such algorithms. Namely, we introduce an
analytical description of an arbitrary number of polydis-
perse ellipsoids, which is computationally feasible, fast and
accurate. Given the algebraic complexity of the interac-
tion problem and its computational cost, we have taken
advantage of the GPU-NVIDIA architecture [1] as a par-
allelization strategy. To validate the accuracy of the hybrid
CPU-GPU algorithm, we have examined the free cooling
process of a granular gas of frictionless ellipsoids, comparing
our results with previous works, where other methodologies
are used.

The paper is organized as follows: in Sect. 2 we describe
the specific DEM, reviewing the algebraic conditions, which
are later involved explaining the contact detection proce-
dure. In Sect. 3 the implementation on GPU architecture is
detailed. The homogeneous cooling state of a system of non-
friction ellipsoids (Sect. 4) is then used to validate our GPU
implementation, namely showing several situations where
our implementation reproduces previous results in the litera-
ture. At the end, the conclusions and outlooks are presented
in Sect. 5.

Fig. 1 Sketch of an ellipsoid, defined by the semi-axis lengths a, b
and c, the center of mass (x0, y0, z0) and q = [q0, q1, q2, q3] is its
quaternion (see text)

2 DEM model for ellipsoids

2.1 Relative position between two ellipsoids

An ellipsoid is a geometric object enclosed in a quadratic
surface. The algebraic description of an ellipsoid centered at
the origin and aligned with the axes in the three-dimensional
Euclidean space is given by:

x2

a2
+ y2

b2
+ z2

c2
= 1 (1)

where the positive numbers a, b and c are the lengths of the
three semi-axis, as it is shown in Fig. 1. For convenience, we
then introduce a scale factor W such that a = a0W, b =
b0W and c = c0W , which reduces Eq. (1) to

x2

a20
+ y2

b20
+ z2

c20
= W2. (2)

Therefore, we embed the three-dimensional Euclidean
space in a four-dimensional space, rewriting Eq. (2) in the
form

XSXT = 0 (3)

where X = (x, y, z, 1) and

S =

⎛
⎜⎜⎜⎜⎜⎝

1
a20

0 0 0

0 1
b20

0 0

0 0 1
c20

0

0 0 0 −W2

⎞
⎟⎟⎟⎟⎟⎠

. (4)

More generally, an arbitrarily oriented ellipsoid centered
at (x0, y0, z0) (see Fig. 1) is defined by a quadratic expression
with the form of
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α0x
2 + α1y

2 + α2z
2 + α3xy + α4xz + α5yz

+ α6x + α7y + α8z + α9 = 0 (5)

where αi are constants that are determined from the matrix
representation of a general ellipsoid, namely

XAXT = 0 (6)

with

A = TRSRT T T (7)

where T and R are the translational and rotational matrices,
respectively. The more general form in Eq. (6) considers the
ellipsoid in homogeneous coordinates.

The translational matrix is defined by

T =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−x0 −y0 −z0 1

⎞
⎟⎟⎠ (8)

and defines the translation of the center of mass from the
origin to the point (x0, y0, z0).

For the rotational matrix, instead of the common defin-
ition through trigonometric functions of the Euler angles,
we use quaternions [28]. The quaternion formalism char-
acterizes each ellipsoid by a four-dimensional vector q =
[q0, q1, q2, q3]. In such way that the rotational matrix reads

R=

⎛
⎜⎜⎝

1−q22 −2q23 2q1q2−2q0q3 2q1q3+2q0q2 0
2q1q2+2q0q3 1−2q21 −2q23 2q2q3−2q0q1 0
2q1q3−2q0q2 2q2q3+2q0q1 1−2q21 −2q22 0

0 0 0 1

⎞
⎟⎟⎠ .

We have followed the formulation of Ref. [26,27], when
examining the relative position of twoneighboring ellipsoids.
It is summarized next (see Fig. 2).

Let us consider thematrix representation of two ellipsoids,
X AXT = 0 and XBXT = 0. It is a fact that when A and B
overlap, there is at least one vector X that satisfies both equa-
tions at the same time. Hence, a linear combination between
both equations establishes the eigenvalue problem [29],

| λA + B |= 0 (9)

with λ being the eigenvalue that solves Eq. (9).
Useful properties of Eq. (9) are the following ones:

P1 The characteristic equation Eq. (9) always has at least
two negative roots.

P2 The two ellipsoids are separated by a plane if and only if
the characteristic equation Eq. (9) has two distinct posi-
tive roots.

Fig. 2 Tetrahedron built with the eigenvectors [V0, V1, V2, V3] of
−A−1B

Since the characteristic equation in Eq. (9) is a polynomial
equation of degree four, we analyze the nature of the roots
of a general quartic equation with real coefficients

ax4 + bx3 + cx2 + dx + e = 0 (10)

which is determined by the sign of the discriminant for the
quartic equation, given by

� = 256a3e3 − 192a2bde2 − 128a2c2e2

+ 144a2cd2e − 27a2d4 + 144ab2ce2

− 6ab2d2e − 80abc2de + 18abcd3

+ 16ac4e − 4ac3d2 − 27b4e2 + 18b3cde

− 4b3d3 − 4b2c3e + b2c2d2.

(11)

Namely, when � < 0 the characteristic equation (Eq. (9)
has two complex conjugate roots and two real roots, whereas
when � > 0 one may get four real roots or two pairs of
complex conjugate roots. To distinguish between the two last
cases with � > 0, we inspect the auxiliary quantity for the
quartic solution P = 8ac − 3b2. If P < 0 (and � > 0)
all roots are real, otherwise there are two different pairs of
complex conjugate roots. Therefore, we conclude that two
ellipsoids are disjoint if their characteristic equation has four
real roots, two real positive and two real negative roots, and
this can be easily detected by evaluating � and P solely. If
� > 0 and P < 0 the ellipsoids are disjoint, otherwise they
are colliding.

According to Ref. [27], when two ellipsoids A and B are
disjoint, the four eigenvectors of−A−1B form the vertices of
a tetrahedron that is self-polar to both ellipsoids, see Fig. 2.
Furthermore, they also proved that two eigenvectors, V0 and
V1 are located outside of both ellipsoids while V2 and V3 are
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inside B and A, respectively. Thus, having the four spatial
positions Vi , the separating plane is well defined by the three
(non-collinear) points, V0, V1 and the middle point between
V2 and V3, C = (V2+V3)/2 . Details about the computation
of the contact point and the contact force for overlapping
ellipsoids will be shown in Sect. 3.2.

2.2 Equations of motion

In our DEM formulation, each particle i (i = 1 . . . N ) has
three translational degrees of freedom and their rotational
movements are described by the quaternion formalism [30–
32]. The translational motion of the particles is governed by
Newton’s Second Law of motion:

Nc∑
j=1

Fi j = mr̈i (12)

with (i = 1, . . . , N ) for the translation degrees of freedom.
Complementarily, Euler equations describe the rotational
motion,

Nc∑
j=1

τ x
i j = Mx

i = Ixx ω̇x
i − (Iyy − Izz) ω

y
i ωz

i ,

Nc∑
j=1

τ
y
i j = My

i = Iyy ω̇
y
i − (Izz − Ixx ) ωz

i ωx
i ,

Nc∑
j=1

τ z
i j = Mz

i = Izz ω̇z
i − (Ixx − Iyy) ωx

i ω
y
i (13)

with Nc the number of contacts of particle i, Ixx , Iyy, Izz
the eigenvalues of the moment of inertia tensor Ii j , which
are given by Ixx = 1

5m
(
b2 + c2

)
, Iyy = 1

5m
(
a2 + c2

)
and

Izz = 1
5m

(
a2 + b2

)
, respectively. For sake of simplicity, we

consider homogeneous ellipsoids with a = c, then Ixx =
Izz . Fi j is the force exerted by particle j on particle i , and
τ i j accounts for its corresponding torque. ωi and ω̇i are the
angular velocity and acceleration of particle i , respectively.
For frictionless ellipsoids there is not net torque acting on
the y angular direction

∑Nc
j=1 τ

y
i j = 0. Moreover, for Ixx = Izz

and ω
y
i (0) = 0 there is not momentum interchange between

the angular degrees of freedom, resulting ω̇
y
i = 0. Hence, in

that conditions the rotational movement of our particles are
reduced to:

Nc∑
j=1

τ x
i j = Mx

i = Ixx ω̇x
i , (14)

Nc∑
j=1

τ z
i j = Mz

i = Izz ω̇z
i . (15)

We have implemented a Verlet-Velocity numerical algo-
rithm to integrate the 3D translational equations of motion
(see Eq. (12)). Nevertheless, the numerical implementation
of the rotational degree of freedom deserves a better descrip-
tion. The set of Eq. (14) are the first of two steps to simulate
the evolution of the particles’ angular velocity ω, in the body
frame. A second step is necessary to solve the orientation,
needed for modeling frictional particles.

The rotational equations of motion are represented using
quaternions. The unit quaternion q = (q0, q1, q2, q3) with
q2 = 1 characterizes the particle orientation and each quater-
nion variable satisfies the equation of motion [30]

q̇ = 1

2
Q(q)ω (16)

with

q̇ =

⎛
⎜⎜⎝
q̇0
q̇1
q̇2
q̇3

⎞
⎟⎟⎠ , Q(q) =

⎛
⎜⎜⎝
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎟⎠ ,

ω =

⎛
⎜⎜⎝
0
ωx

ωy

ωz

⎞
⎟⎟⎠ .

Equations (13) and (16) are solved together using a Fin-
cham’s leap-frog algorithm [33]. This algorithm considers
the Taylor expansion of q(t + dt) up to second order

q(t + dt) = q(t) + dt q̇(t) + dt2

2
q̈(t) + O

(
dt3

)
(17)

and since

q
(
t + dt

2

)
= q(t) + q̇(t)

dt

2
(18)

one gets

q(t + dt) = q(t) + dt q̇
(
t + dt

2

)
+ O

(
dt3

)
. (19)

Here, the quaternion derivative at the mid-step, q̇(t + dt/2),
is required and for that q(t + dt/2) and ω(t + dt/2) are
required. The former can be easily calculated using Eq. (19)
where q̇(t) is obtained from Eq. (16) after computing ω(t)
from Eq. (13) as

ωx (t) = ωx

(
t − dt

2

)
+

(
Mx

Ixx

)
dt

2
,

ωz(t) = ωz

(
t − dt

2

)
+

(
Mz

Izz

)
dt

2
.

(20)
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In the same way ω
(
t + dt

2

)
is determined as

ωx

(
t + dt

2

)
= ωx

(
t − dt

2

)
+

(
Mx

Ixx

)
dt,

ωz

(
t + dt

2

)
= ωz

(
t − dt

2

)
+

(
Mz

Izz

)
dt.

(21)

To avoid buildup errors the quaternions q(t) are renormalized
every timestep, based on the formulation introduced byWang
[34].

3 DEM implementation of ellipsoids on GPUs

AhybridCPU-GPUdiscrete elementmethodhas been imple-
mented to compute analytically the local interaction between
an arbitrary number of ellipsoids. As most of the GPGPU
software some pieces of code run on the CPU and others run
on theGPU. Figure 3 represents the algorithmwe have devel-
oped. In this section, we will describe the implementation in
details.

3.1 Overview of the CPU-GPU algorithm

As any other CUDA-software, the program begins with the
initialization of the driver API, just to be able to call the func-
tions from the API. Then, the necessary memory is allocated

in both CPU and GPU, and the configuration parameters of
the system are loaded. All this starting process runs on the
CPU as pointed out in the first step of the flowchart of Fig. 3.
The following step is the copy of all the particles data from
the CPU-initialized variables to the GPU allocated memory.

Once the configuration is set up, the DEM algorithm runs
in a temporal for-loop iterator. As we pointed in the previous
section, a VelocityVerlet integrator algorithm is used to solve
the translational equations of motion [35]. This method is
divided into two steps, one at the beginning and one at the
end of the loop iteration.

Both steps of the Verlet integrator are functions that run
in parallel on the GPU device. In both cases, we take advan-
tage of the powerful library of parallel algorithms and data
structures, Thrust [36]. The procedure starts on the CPU,
and consist in building tuples of acceleration, velocity, and
position based on the particle identifier. Then a thrust-device
iterator routine is launched and the control goes to the GPU.
The main advantage of using Thrust library is that the num-
ber of threads (very basic element of data to be processed)
and blocks (group of threads) is optimized depending on the
number of tuples, and it is set up in time of execution. When
the control goes to the GPU, in parallel, each thread gets a
unique tuple and using the acceleration computes the corre-
sponding velocity and position.

Next we execute the collision detection method by using
a neighbor list. This method consist in finding all the pairs

Fig. 3 Flowchart of our DEM
algorithm. All the code runs on
the CPU until the control is
given to the GPU. The
overlapped boxes represent
different threads running in
parallel. For further details about
how to determine the relative
position between ellipsoids and
the analytical calculation of the
contact distance and contact
plane see Fig. 4
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Fig. 4 Flowchart of the contact
detection and execution for a
given pair of neighboring
ellipsoids. This routine runs
entirely on GPU

of ellipsoids in a certain neighborhood, and that are suscep-
tible of being in contact during a particular time-step. The
collision detection is implemented using a link cell method
[37]while building a list of neighbors with a given frequency.
Once the collision is detected, the forces and torques exerted
on each particle are calculated. The aim is to determine the
total force and torque acting on each ellipsoid. Both subrou-
tines, collision detection and execution, are implemented as
traditional kernels.

3.2 Analytical deduction of the interaction force
between ellipsoids

In DEM of soft particles a local inelastic deformation is
assumed; thus, the interaction force between grains depends
on their overlap distance. In Fig. 4 we present the flowchart
of the contact detection implementation. As we have already
mentioned, the collision detection has been optimized by
using a link cell algorithm and a list of contacts.

First,weget a pair of neighboring ellipsoids andbuild indi-
vidual matrix using the general representation of Eqs. (6) and
(7). After that, we compute the coefficients of their character-
istic equation, Eq. (10), the discriminant � (Eq. 11) and the
auxiliary quantity P = 8ac − 3b2 . When the discriminant
� is positive and P is negative, the ellipsoids are disjoint and
so, there is no need to compute any interaction force. Con-
trary, if the discriminant is negative, the ellipsoids overlap
and the contact force and torque are calculated.

As a novel contribution, we have analytically determined
a common contact plane n by thoroughly tuning the scale
parameter W , defined in Eqs. (2) and (4). Thus, we proceed

Fig. 5 Determining the contact point. The fuzzy ellipsoids A and B are
the original colliding ones. The solid ones As and Bs are the shrunk dis-
joint ellipsoids. The [V0, V1, V2, V3] tetrahedron is also shown. Contact
point is C and [x1, x2] is the overlap distance

reducing the spatial scale W and shrinking both ellipsoids
until they do not overlap anymore, i.e. when the discrim-
inant �(W) = λA(W) + B(W) changes its sign at Wo

(see Fig. 5). Remarkably, this part of the our algorithm
is quite efficient because it is not necessary to build both
matrices, while determining �(W) for each value of W .
Additionally, we have properly factorized the discriminant
equation in terms of the parameter W and, as a result, sev-
eral coefficients are computed just once. Henceforth, we
will refer to the shrunk ellipsoids as A(Wo) = As and
B(Wo) = Bs .
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As a second step, we analytically compute the eigen-
vectors Vi of −A−1

s Bs . As we pointed out above, the four
eigenvectors Vi define the contact plane and the contact point
C = (V2 + V3)/2. Then, the normal vector of the contact
plane is deduced by the cross product ofV0 −C and V1 −C
resulting,

n = (V0 − C) × (V1 − C)

|(V0 − C) × (V1 − C)| . (22)

To find the overlap distance δ, we analytically derive the
intersection points x1 and x2 between the straight line defined
by V2 and V3 with the surface of the original ellipsoids A and
B. Thus, δ accounts for the length of the segment [x1 x2].

Finally, the interaction force, Fi j , and torque τ i j , between
two contacting particles read as:

FN
i j = −kN δn − γ NvN

reln, (23)

τ i j = li j × FN
i j (24)

where kN is the spring constant in the normal direction, γ N

is the damping coefficient in the normal direction and vN
rel is

the normal relative velocity between ellipsoids i and ellip-
soid j . Vector li j represents the branch vector related with
the contact point. For sake of simplicity, here we consider
frictionless ellipsoids, and therefore we do not have any com-
ponent acting on the tangential direction t.

4 Benchmark: homogeneous cooling of frictionless
ellipsoids

To validate our DEM algorithm on GPU architecture, we
have implemented a benchmark that consists of a granular
gas of ellipsoidal particles without friction. Hence, we have
explored the cooling dynamics of a granular gas of friction-
less particles. In particular, we examined the evolution of the
rotational and translational temperature that are known to
depend accordingly on specific laws on the geometrical and
elastic properties of the ellipsoids. As we describe in this
section, our data outcomes corroborate the ones presented
by Villemot and co-workers in Ref. [3].

Initially, the ellipsoids are homogeneously distributed in
the space following a simple cubic structure. Their initial
translational and rotational velocities follow a Gaussian dis-
tribution. To minimize finite size effects, periodic boundary
conditions are imposed. Moreover, to remove the sensitivity
to initial conditions the system is allowed to execute several
hundreds of collisions without dissipation, before starting to
analyze the system temporal evolution.

We model hard particles and the maximum overlap must
always bemuch smaller than the particle size. This have been
ensured by introducing values for normal elastic constant,

Fig. 6 a represents anHCSof 3Dhomogeneous prolate ellipsoidswith
ξ = a/b = 2.82 and a volume fraction of η = 0.058 with coefficient
of normal restitution of en = 0.95. Plots (b), (c) and d show the HCS
of ellipsoids of different kind of elongations of ξ = 1.15, ξ = 2 and
ξ = 3 respectively, keeping the same packing fraction

Table 1 Geometrical dimensions of the homogeneous ellipsoids. The
elongation, ξ = a/b,major semi-axea andminor semi-axe b are shown.
In all cases, the sizes of the semi-axes correspond to a constant volume
fraction η = 0.058.

ξ 1.15 1.25 1.50 1.75 2.0 2.25 2.50 2.82 3.0

a 0.527 0.527 0.629 0.697 0.763 0.825 0.884 0.962 1.000

b 0.458 0.446 0.419 0.398 0.382 0.367 0.354 0.340 0.334

kn = 108 N/m and ρg = 2000 kg/m3. Moreover, we use an

equivalent normal dissipation parameter γn =
√

4knm12

1+
(

π
ln en

)2 ,

depending on the normal restitution en and the reduced mass
m12 = m1m2

m1+m2
[38]. Hence, we estimate the contact time as

tc = π
√

m12
kn

, and accordingly a time-step of �t = tc
50 is set.

To validate the algorithm, systems of particles with different
coefficient of normal restitution have been studied, namely
en = 0.90, 0.95, 0.98.

In all the simulations reported here, we have a fixed num-
ber of N = 4096 particles,which are confined in a square box
of size L = 2m (see Fig. 6), with constant volume fraction
η = 0.058. Ellipsoids of several elongations (ξ ∈ [1.15, 3])
have been examined. In Table 1, the geometrical dimension
of the ellipsoids are given in detail.

4.1 Homogeneous cooling state

A granular gas is a diluted set of macroscopic grains which
loose their energy due to their inelastic collisions. When a
granular gas evolves freely, at early stages, the dissipative
nature of the collisions leads to a homogeneous cooling state
(HCS). In this regime, the density and velocity fields are
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approximately uniform and all the time dependencies are
practically controlled by the granular temperature. Analo-
gously to the kinetic theory of gases the granular temperature
can be defined from equating the kinetic energy T ≡ 1

2mv2.
In the past, the HCS has been described for frictional [39,

40,42,43], and non-frictional spheres [44,45], needless [46],
ellipsoids [3] and non-uniform particles [47,48]. Moreover,
in the last years important experimental efforts have been
made examining the macroscopic behavior of granular gases
[49–52].

In our simulation, we consider a granular gas of N iden-
tical ellipsoids of revolution with mass m inside a closed
volume V , with a global mass density ρ = Nm/V . The
semi-axis a and b can be expressed in terms of the semi-axis
b and the elongation ξ = a/b, with a > b. The volume of
each ellipsoid is defined as V (ξ) = 4

3πab
2 = 4

3πξb3. The
eccentricity of the ellipsoid is ζ 2 = 1 − 1

ξ2
. The moment of

inertia is given by Ixx = Izz = 1
5m

(
a2 + b2

)
.

We can define a granular temperature for our gas of ellip-
soids using the translational and rotational energies, reading
as,

Ttr = 2

3N
Etr = 2

3N

N∑
i=1

1

2
mv2i , (25a)

Trot = 1

3N
Erot = 1

N

N∑
i=1

1

2
Iω2

i (25b)

where we include three translational and only two rotational
degrees of freedom because the ellipsoids are frictionless.
Following theses definitions Eq. (25), when full equiparti-
tion applies, Ttr/Trot = 1.

The total granular temperature of the gas of ellipsoids can
also be defined as a weighted average of Ttr and Trot by the
respective degrees of freedom

Ttot = 3

5
Ttr + 2

5
Trot . (26)

Hence, when equipartition applies, Ttr = Trot = Ttot and a
single granular temperature can be examined.

In the simple case of a gas composed by spherical parti-
cles, the energy lost can be described by a constant restitution
coefficient en . In this case, it has been deduced that the evo-
lution of the granular temperature obeys Haff’s Law [53,54],

T (t)

T (0)
= 1

(1 + α�0t)2
= 1

(1 + τ)2
(27)

where�0 is the equilibriumEnskog collision rate at the initial

granular temperature T (0) = 2
3
Etr (0)
N [53,54]. The coeffi-

cient α is defined as a function of both the number D of

degrees of freedom and the effective coefficient of normal

restitution en , namely α = 1−e2n
2D .

Bereolos et al. [2] examined the transport properties of
the hard ellipsoids fluid. Based on these results, and with the
same spirit of Ref. [3] the collision rate per particle �0, of
3D elliptical macroscopic bodies can be defined as,

�0 = 4
(πT (0)

m

)1/2
ρgcSc〈D〉c (28)

where the term 〈D〉c measures the average energy trans-
fer between rotational and translational degrees of freedom
over collisions and 4π Sc accounts for the average exclusion
surface in contact. Moreover, gc(e) is the isotropically aver-
aged contact value of the pair distribution proposed by Song
and Mason [55]. There, e = R(ξ)S(ξ)/(3V (ξ)) is the non-
sphericity parameter and S(ξ) and R(ξ) define the surface
area and mean radius of the convex body, which reads as,

S(ξ) = 2πb2
(
1 + ξ

arcsin ζ

ζ

)
(29a)

R(ξ) = a

2

[
1 + 1

2ζ ξ
log

(
1 + ζ

1 − ζ

)]
. (29b)

Villemot and co-workers [2,3] compute analytically the
quantity 〈D〉c, for an homogeneous ellipsoid depending on
its elongation ξ . Moreover, using an event-driven algorithm,
a HCS of ellipsoids was identified. Their findings indicates
that the cooling dynamics of a gas of ellipsoids in HCS can
be also described by the mean field scheme of Eq. (27).

In the next section, we proceed exploring the kinetic
evolution of a granular gas of ellipsoids, using DEM and
comparing with the mean field approximation.

4.2 Numerical results

In Fig. 7 we represent the evolution of the translational Ttr
and rotational Trot kinetic energies for gases of ellipsoids
with different elongations. In all cases the kinetic energy is
monotonically decreasing, which suggests the establishment
of a homogeneous cooling process for ellipsoids similar to
the traditional homogeneous cooling state of spheres. Hence,
after a short transient, the decay is algebraic t−2 in agree-
ment with the asymptotic analytic prediction of Haff’s law.
Complementarily, in Fig. 8, the asymptotic value of Ttr/Trot
varying the elongation and the coefficient of normal restitu-
tion is represented. Note that the coupling between degrees
of freedom in a gas of ellipsoids is determined by the particle
elongation ξ . As it was found in Ref. [3], for short ellipsoids
the translational degrees of freedom cool down faster than the
rotational ones. For longer ellipsoids, however, the energy
equipartition Ttr/Trot ≈ 1 is satisfied within the numerical
accuracy of the algorithm. Specifically, for ellipsoids with
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Fig. 7 Translational temperatures and Ttr/Trot as function of the time
for different elongations ξ (from 2 to 3) and with a coefficient of normal
restitution of en = 0.95.
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Fig. 8 Asymptotic value of Ttr/Trot as a function of the elongation,
for different coefficients of normal restitution.

ξ < 2, at a given time the rotational kinetic energy is slightly
greater than the translational one, but for ξ > 2 the transla-
tional and rotational kinetic energy equally evolves in time.
This indicates that for short ellipsoids ξ < 2, the energy
interchange between the rotational and translational degrees
of freedom is notably affected, and full energy equipartition
is not satisfied (see Fig.7). Although this behavior is highly
non-trivial, it is still intuitive that after crossing the ξc = 2,
from above, a single collision of two particles may favor the
translational to rotational energy transfer. Note that in colli-
sions where the contact point is close to the center of mass of
one of the particles, its translational energy diminishes, while
its rotational degree of freedom is less affected. As particles
get shorter, central collisions are more and more frequent,
which may unbalance the energy interchange process.

To compare the obtained cooling dynamics with the ana-
lytic expression Eq. (27) one needs to introduce a proper

collision rate �0(ξ) and the value of α = 1−e2n
2D , in which D

is interpreted as the number of degrees of freedom among
which energy is transferred [3]. In Fig. 9, we illustrate the
comparison of our numerical outcomes for the evolution of
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 / 

T tr(0
)

en = 0.90
en = 0.95
en = 0.98
Analytic
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)
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τ

 ξ = 2.25

 ξ = 2.5  ξ = 3.0

 ξ = 2.0

 ξ =1.25  ξ = 1.5

Fig. 9 Kinetic translational energy Etr (t)/Etr (0) as a function of the
collisional time τ = α�0(ξ)t obtained for different elongations, using
as collision rate �0(ξ) Eq. (28). Note that exactly the same is obtained,
when plotting Ttr (t)/Ttr (0) as a function of τ ∗ = α∗�0(ξ)t , with α∗ =√
3/2 α

Etr (t)/N vs the collisional time (τ = α�0(ξ)t) with the
analytical expression Eq. (27). For each case, the value of �0

has been analytically deduced from Eq. (28), using Eq. (29a)
and (29b), aswell as the eccentricity ξ of the ellipsoids.More-
over, for 〈D〉c(ξ) the analytical values of Ref. [3] were used.
The numerical data corresponds to particles with an effec-
tive restitution coefficients of en = 0.90, 0.95 and 0.98, and
results for several particle shapes ξ are shown. In each case,
the solid line represents the theoretical prediction of Eq. (27)

using T (0) = Etr (0)/N , α = 1−e2n
2D and setting D = 5,

that corresponds with three translational and two rotational
degrees of freedom, respectively [3]. This nice scaling of
the curve and the remarkable agreement with the analytic
prediction validates the performance of the numerical algo-
rithm.However, the agreement is slightly lost as we approach
to the limit ξ = 1 (spheres), as well as when the dissipation
is enhanced. This seems to correlate with the fact that long
ellipsoids ξ > 2 exhibit nearly perfect equipartition, and
short ellipsoids equipartition is lacking Ttr/Trot 	= 1.

As we pointed out earlier, performing even driven simula-
tions a homogeneous cooling state in a gas of hard ellipsoids
was earlier identified [3]. Thus, in Ref. [3] the cooling
dynamics was also compared with Haff’s law Eq. (27), but
examining the evolution of the total kinetic energy Ttot (t)
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Fig. 10 Total energy as a function of the collisional time τ = α�0(ξ)t
obtained for different elongations (cases where Ttr/Trot 	= 1, and sev-
eral restitution coefficient. In all cases the solid line represents the
analytic prediction of Eq. 27, using the collision rate �0(ξ) proposed in
Ref. [3]

defined in Eq. (26). In Fig.10, we illustrate the kinetic evo-
lution of the total temperature Ttot defined by Eq. (26), for
system with ξ < 2 i.e., where no-equipartition is found. The
time scale has also been rescaled τ = α�0(ξ)t , using the
analytical values of �0(ξ) and the total initial temperature
T (0) = Ttot (0). It is noticeable that Eq. (27) seems to pre-
dict the cooling dynamics during the homogeneous state in
terms of Ttot (t), for ξ < 2 where equipartition is lacking
Ttr/Trot 	= 1.

Although our outcomes are in good agreement with [3],
they also seems to indicate that the naivemean field descrip-
tion of the cooling dynamics by Eq. (27) is conditioned to
the existence of energy equipartition. Moreover, note the
cooling dynamics predicted by Eq. (27) is based on the
assumption that the restitution coefficient is constant, regard-
less the details of the collision event. This assumption is
natural when performing event-driven simulations. Mean-
while, presupposing a constant restitution coefficient is not
always valid when using DEMs of non-spherical particles,
because the energy losing generally depends on the type
of collision. However, the quality of the scalings obtained
for the kinetic evolution of Etr (t)

N = 3
2Ttr (t), (see Fig.9

results for ξ > 2)) indicates that the particle shape can
be simply accounted introducing a new characteristic time
τ ∗ = α∗�0(ξ)t , which can be identified using an effective

dissipation α∗ =
√

3
2 α [47].

In addition, we have also examined the velocity sta-
tistics during the cooling process. Originally, the velocity
distribution of the particles follows a Gaussian distribution
then due to the low dissipation the system cools down uni-
formly. Consequently, the particle velocity distribution is
practically governed by a single scale corresponding to the
mean translational temperature Ttr (t), and one can identify
a dynamic scaling regime where the scaled velocity distribu-

tion P(c) = P
(

vi
vms

)
becomes stationary (see Fig. 11). The

scaled velocity distributions on the x direction are illustrated
at several times. The mean-square speed vms has been used

-9 -6 -3 0 3 6 9
vx / vms
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10-4

10-3

10-2

P 
(v

x / 
v m

s)

 τ =  0.6 
 τ =  6.3 
 τ =  31.0  
Gaussian Fit

Fig. 11 Normalized translational velocity distribution at different
times for a system of 4096 frictionless ellipsoids. Results at different
times are presented. The dashed lines corresponds to a Gaussian Fit

Table 2 Values of the Cundall Number obtained computing the cool-
ing dynamics of several number of particles N during one second of
simulation. For comparison results of spheres are also shown

N 64 512 4096 32,768 2,62,144

Ellip. 1.1 × 105 7.4 × 105 3.9 × 106 4.5 × 106 4.2 × 106

Spher. 2.4 × 105 1.5 × 106 5.8 × 106 7.7 × 106 8.2 × 106

as scaled parameter. In all cases, the velocity distributions

remain close to a Gaussian P(c) = 1
σc

√
2π

e
− c2

2σ2c featuring

the expected homogeneous cooling state. Regardless of the
particle anisotropy (data not shown), the scaled velocity dis-
tribution remains close to a Gaussian.

Details concerning the numerical performance of the algo-
rithm are summarized in Table 2. We have benchmarked the
algorithm computing the cooling process of ellipsoids and
spheres, using different number of particles N and a fixed
volume fraction η = 0.058. For sake of simplicity, in all
cases we have used a cubic initial distribution and the sys-
tem size N was always multiple of 32 [56,57]. The control
parameter was a Cundall Number (NC = NNi/tr ), where tr
is the real time elapse needed to compute Ni iterations. The
benchmarks were executed on the same PC with an NVIDIA
GeForce TITAN Black of 2280 NVIDIA cores. Note that,
for small system when increasing the system size the Cun-
dall number increases, because N is smaller than the number
of the GPU-cores. However, when the system size reach the
GPU maximum capabilities the Cundall Number tends to a
plateau, indicating NC ∝ N . As expected the performances
of equivalent systems composed by spheres are notably bet-
ter due to the simplicity of the contact interaction. Finally, it
is important to remark that the reported values of NC strongly
depend on the specific configuration conditions, specially the
volume fraction η, which determines the collision frequency.
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5 Conclusion

We have presented a novel CPU-GPU implementation of an
accurate DEM algorithm for a system of ellipsoids. We have
implemented on GPU architecture, an analytical collision
detection method and a novel method to compute the over-
lap distance and normal plane of contact for two colliding
generalized ellipsoids. Although, sequentially, this is a really
time-consuming procedure, we have taken advantage of the
GPU multicore architecture.

The accuracy of the algorithm has been validated by sim-
ulating a granular gas of homogeneous prolate ellipsoids
with low dissipation. We have found a uniform regime,
where both the translational and rotational kinetic energy
homogeneously decrease, suggesting the establishment of a
homogeneous cooling process. Our findings for the collision
frequency, depending on the particle eccentricity, have been
validated comparingwith kinetic theory for a gas of ellipsoids
[3]However, the results indicate that themean field treatment
of the cooling dynamics of elongated particles is condi-
tioned by the existence of energy equipartition. Although the
results presented here are focused on frictionless ellipsoids,
it is important to remark that taking advantage of the imple-
mented kernels for rough spheres [41], the implementation
of rough generalized ellipsoids is straightforward. The lat-
ter would allow us to investigate more complex processes, in
granular gases of rough particleswith high dissipation,where
clustering and significant translation-rotation correlations are
expected [42,52]. Finally, following our findings, a detailed
comparative analysis between our present framework and
other parallelization strategies is now demanding. Up to
authors knowledge no other analytical implementations were
done that address large scales similar to the ones addressed in
this paper. For comparing different performances the devel-
opment of a complete newalgorithm, usingMPIorOPENMP
is necessary. This point will be addressed elsewhere.
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