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Abstract The present work is a numerical study of the deterministic spin dynamics
of two interacting anisotropic magnetic particles in the presence of a time-dependent
external magnetic field using the Landau–Lifshitz equation. Particles are coupled
through the dipole–dipole interaction. The appliedmagnetic field is made of a constant
longitudinal amplitude component and a time-dependent transversal amplitude com-
ponent. Dynamical states obtained are represented by their Lyapunov exponents and
bifurcation diagrams. The dependence on the largest and the second largest Lyapunov
exponents, as a function of the magnitude and frequency of the applied magnetic field,
and the relative distance between particles, is studied. The system presents multiple
transitions between regular and chaotic behaviour depending on the control parame-
ters. In particular, the system presents consistent hyper-chaotic states.

Keywords Magnetisation dynamics · Dipolar interaction · Hyper-chaos

1 Introduction

The combination of energy injection and dissipation maintains macroscopic systems
out of the equilibrium [1]. This can generate complex dynamical states, such as noise-
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periodicity, intermittency or chaos [2–4]. Several experiments of chaotic behaviours
in magnetic systems have been reported [5–10]. Typical magnetic samples are yttrium
iron garnet spheres [5]. It is worth mentioning that, using the ferromagnetic resonance
technique, different types of routes to chaos have been found, such as period-doubling
cascades, quasi-periodic routes to chaos or intermittent routes to chaos. Therefore,
a detailed characterisation of chaotic states is relevant and in order. The standard
approach to study the magnetisation dynamics is based on the Landau–Lifshitz sys-
tem, which was derived 80 years ago [11]. Using this model (or its generalisations),
theoretical descriptions and phase diagrams of the chaotic regions have been given
and explored [12–23]. Some of these models show new possible roots and ranges
of physical parameters in chaotic domains that could motivate new experiments in
this area. In addition, a deep exploration of the parameter space may help with chaos
control [24,25] in experimental setups.

On the other hand, applications on two-particle systems under constant magnetic
fields can be found in Refs. [26–29]. For conservative systems, when the interaction
between the particles is based on energy exchange, it is possible to obtain analytical
expressions for themagnetisations [26]. However, if the anisotropy energy is included,
the system becomes non-linear and the analytical solutions are non-tractable. Fur-
thermore, the system can exhibit chaotic states in the conservative case [29]. Two
interacting dipoles in the presence of an external homogeneous magnetic field were
studied in Ref. [30]. The authors found that the total magnetisation is not conserved;
furthermore, for the non-dissipative case, it is a fluctuating function of time with a
strong dependence on the strength of the dipolar term. In the dissipative case, there
is a transient time before the total magnetisation reaches its constant value. However,
no permanent chaotic states were found. The inherent interest of this dipolar system
resides in the rich variety of dynamical states it presents. Furthermore, it can be useful
to understand some features of new complex materials such as artificial spin ice where
the dipolar interaction plays an important role [31,32].

The aim of this paper is to analyse the influence of a time-dependent external
magnetic field on a system of two interacting anisotropic magnetic particles. The
particles have dipole–dipole interaction. In particular, we study a periodic driving in
the direction perpendicular to the main anisotropy direction, which is called the easy
axis. The paper also focuses on the effect of the relative distance between particles. The
dynamical behaviour studied, calculating numerically the Lyapunov exponents and
other dynamical indicators, was characterised. The paper is organised in the following
way. In Sect. 2, the theoretical model is briefly described. In Sect. 3, the numerical
results are provided and discussed. Finally, some conclusions are presented in Sect. 4.

2 Theoretical Model

Let us consider two anisotropic magnetic particles in the presence of an external
magnetic field, Hext. We assume that each particle can be represented by a magnetic
mono-domain of magnetisation Mi with i = (1, 2). This approximation is called
macrospin approximation. The temporal evolution of the system can be modelled by
the Landau–Lifshitz equation [11]
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dMi

dt
= −|γ |Mi × Hi − η|γ |

MiS
Mi × (Mi × Hi ) , (1)

where γ is the gyromagnetic factor, which is associated with the electron spin and
is approximately given by |γ | = |γe| μ0 ≈ 2.21× 105 mA−1 s−1. In the above
equation, η denotes the dimensionless phenomenological damping coefficient that is
characteristic of the material and has a typical value ranging from 10−4 to 10−3 in
garnets and 10−2 or larger in cobalt or permalloy [33].

We assume that the coupling between the particles is the dipole–dipole interaction,
and hence, the effective magnetic field for each particle, Hi , is given by

Hi = Hext + βi
(
Mi · n̂i

)
n̂i + d−3 [

3(Mk · r̂)r̂ − Mk
]
, (2)

being (i, k) = 1, 2 such that i �= k. Hereβi measures the anisotropy along theni axis, d
is the fixed distance between the twomagneticmoments, and r̂ is a unit vector along the
direction between the two particles. Notice that this special type of anisotropy is called
uniaxial anisotropy and the constants βi can be positive or negative depending on the
specific substance and sample shape [34] in use. Let us assume that the particles have
the same magnitude M1S = M2S = Ms and the same anisotropy β1 = β2 = β and
n1 = n2 = ẑ. We apply an external magnetic fieldHext that comprises both, a constant
longitudinal and a periodic transverse part with a fixed amplitude and frequency

Hext = H0 + HT sin (�t) , (3)

where both H0 (‖ẑ) and HT (⊥ẑ) are time independent. The axis r̂ is chosen perpen-
dicular to the anisotropy axis, in particular r̂ = x̂. Figure 1 shows a schematic view
of the two-particle system. Let us remark that the deterministic LL equation is only
valid for very low temperatures [11,35]. In order to take the temperature effect into
account, a random magnetic field must be added [35,36]. Besides, we note that for
zero damping, i.e., η = 0, and without parametric forcing, i.e., HT = 0, Eq. (1) is
conservative. Hence, the dissipation and the oscillatory injection of energy move the
magnetic particles in and out of the equilibrium. In such a circumstance, the mag-
netisation of the particles may exhibit complex behaviour as, e.g., quasi-periodicity,
and chaos [12,19–21]. The next section provides an exhaustive characterisation of the
chaotic regime including its dependence on the longitudinal field |H0|, the frequency

Fig. 1 Schematic view of the two-particle system. The setup of the system consists of the unit vector along
the direction between the two particles is r̂ = x̂, the anisotropy axes of particles are n1 = n2 = ẑ, and the
external field Hext , having multiple components. (Color figure online)
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� and the distance between particles d. This will reveal a rather complicated topology
in the parameter space. The dynamical behaviour of both magnetisations is analysed
using different methods.

3 Simulations

This Section is divided into two parts. The first part briefly discusses the quantities
used to characterise temporal regimes. The second part covers some numerical results
and the corresponding analysis.

3.1 Dynamical Indicators

First, the dynamics of Eqs. (5–7) are characterised by evaluating the Lyapunov expo-
nents (LEs). This method consists on quantifying the divergence between two initially
close trajectories of a vector field [37,38]. In general, for an effective N-dimensional
dynamical system described by a set of equations, dXi/dτ = Fi (X, τ ), the ith-
Lyapunov exponent is given by

λi = lim
τ→∞

(
1

τ
ln

(∥
∥δXi

τ

∥
∥

∥∥δXi
0

∥∥

))

, (4)

where ‖δXi
ξ‖ is the distance between the trajectories of the ith-component of the vector

field at time ξ . They can be ordered by decreasing amplitude: λ1 ≥ λ2 ≥ · · · ≥ λN .
The first two exponents are the largest Lyapunov exponent (LLE) and the second
largest Lyapunov exponent (SLLE). Due to the fact that the LLG equation conserves
themodulus of each particle |mi | and that the appliedmagnetic field is time dependent,
the effective dimension of the phase space is five. From a dynamical system point of
view, more than one exponent may become positive for a system of dimension five.
Therefore, by exploring the dependence of the LLE on the different parameters of the
system, one can identify areas in the control parameter space, where the dynamics
is chaotic (LLE positive), and those showing non-chaotic dynamics (LLE vanishing
or negative). In addition, when both the LLE and the SLLE have positive values the
system is at a hyper-chaotic regime. Nevertheless, since this is a one-frequency forced
system, at least one of its Lyapunov exponents will always be zero; hence the simplest
attractor is a periodic orbit. Another possibility is to have two or three Lyapunov
exponents equal to zero. In these cases, the system exhibits a two- or three-frequency
quasi-periodic behaviour. The Lyapunov exponents are presented in the form of 2-D
maps as a function of the relevant parameters of the system [38,39]. Also, a zooming
technique to explore in more detail the different regimes will be used [40–42].

Apart from the Lyapunov spectrum analysis, there are other methods of quantifying
the dynamical behaviour of a system, such as the Fourier spectrum, Poincaré sections,
or correlation functions, just to mention few [10,12,18,42]. The classical technique
to understand the time series of each component of mi is to take the fast Fourier
transform (FFT) which gives a complex discrete signal, S (
), in the frequency space
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 = (
1, . . . ,
n), producing a set of pairs {
k, S (
k)}. For this signal,we calculate
its power spectrum |S (
)|. In general, when |S (
)| has a finite number of discrete
peaks, the time series is regular, whereas if there is a continuum of peaks, the series
may be chaotic. Let us mention that the bifurcation diagrams using Poincaré sections
of the magnetisation angles, given by mi = (cosφi sin θi , sin φi sin θi , cos θi ), were
employed in Ref. [12]. The local maximum of a specific component ofmi was used in
Ref. [19]. In these diagrams, a continuum of points implies quasi-periodic or chaotic
behaviour.

3.2 Numerical Results

In order to simplify and speed-up the integration of the equations of motion, dimen-
sionless units are used. This recasts Eq. (1) in terms of themagnetisationmi = Mi/Ms

and time τ = t |γ |Ms [33]. This normalisation leads to |mi | = 1. The dimensionless
field is h̃i = Hi/Ms with h̃x,y ≡ hx,y sin (ϕτ), and h̃z ≡ hz where ϕ = �/(|γ |Ms) is
the dimensionless frequency. In order to avoid numerical artefacts [12], it is suitable
to solve Eq. (1) in the Cartesian representation, namely,

dmx,i

dτ
= −(my,i +ηmx,imz,i )hz+

{
(mz,i − ηmx,imy,i )hy + η (m2

y,i + m2
z,i )hx

}
sin(ϕτ)

+d−3(mz,k + ηmy,kmx,i )my,i −
{
β my,i + d−3(my,k − ηmz,kmx,i )

}
mz,i

+2η d−3mx,km
2
y,i − η (β mx,i − 2d−3mx,k)m

2
z,i , (5)

dmy,i

dτ
= (mx,i − ηmy,imz,i )hz −

{
(mz,i + ηmx,imy,i )hx − η (m2

z,i + m2
x,i )hy

}
sin(ϕτ)

−
{
β my,i +d−3my,k

}
ηm2

z,i − d−3(mz,k+2ηmx,kmy,i )mx,i − η d−3my,km
2
x,i

+
{
β mx,i − d−3(2mx,k − ηmz,kmy,i )

}
mz,i , (6)

dmz,i

dτ
= {

(my,i − ηmx,imz,i )hx − (mx,i + ηmy,imz,i )hy
}
sin(ϕτ)

+d−3 {
(mx,imy,k + 2mx,kmy,i ) + η (my,kmy,i − 2mx,kmx,i )mz,i

}

+η (m2
x,i + m2

y,i )
{
hz + β mz,i − d−3mz,k

}
. (7)

Eqs. (5–7) have been integrated using a fifth order Runge–Kutta integration scheme
with a variable step [43] that ensures a relative error of 10−7 on themagnetisationfields.
The LEs are calculated for a time span of τ = 80, 000 after an initial transient time
of τ = 4000 has been discarded. The Gram–Schmidt orthogonalisation process is
performed after every δτ = 3.91. The error has been estimated to be E = 0.1%,
which is sufficiently small for the purpose of the present analysis.

In order to get a better physical insight into the problem, let us evaluate the scales
introduced here. Typical experimental values ofMs are, e.g.,Ms [Co] ≈ 1.42×106 A/m
for cobalt materials, and Ms [Ni] ≈ 4.8×105 A/m for nickel materials [33]. Hence, the
time scale (τ = 1) is in the picosecond range, ts [Co] = 1/(|γ |Ms [Co]) ≈ 3.2 ps and
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ts [Ni] = 1/(|γ |Ms [Ni]) ≈ 6 ps. Let us mention that in these materials the macrospin
approximation (mono-domain particles) is valid for particles with sizes of 10–20
nm, because for smaller sizes, surface anisotropy effects are relevant [44], and for
larger sizes, non-uniform magnetic states appear, such as vortices in cobalt nanodots.
In addition, the shape of the nanoparticle plays an important role in the macrospin
approximation [45]. The distance between particles ranges typically from 50 to 600
nm [32–34,46]. Although the external field can be large, if it is of order of Ms , the
present technology allows the generation of such magnitudes [47–49]. Furthermore,
interesting dynamical behaviour like the magnetic analogue of the inverted driven
pendulum can appear [50]. Due to the large number of parameters involved in the
system, β = 1, η = 0.05 and hy = 1 will be fixed throughout the paper. Parameters
{hx , hz, ϕ, d} will vary depending on the simulation presented.

Figure 2 shows a phase diagram displaying the LLE colour coded as a function of
the distance d and the field amplitude hx . It reveals a whole region of periodicity for
d � 0.7, within the ranges exhibited. In this region, the field is not strong enough to
break the consistent interaction between the dipoles. It can perturb the set as a whole,
but it cannot disassociate the dipoles in independent orbits. For d � 3, the dynamics
for each fixed hx becomes very consistent, regardless of how much the distance is
increased. This can therefore be considered the regionwhere field dynamics dominates
dipolar interaction. The region has interlaced chaotic and periodic dynamics as hx is
increased. It is between these two regions, in the transition between field domination
and dipole domination, i.e., 0.7 � d � 3, where a rich variety of chaotic regions is
found. Hence, a zoom on this region is performed and is shown in Fig. 2 (right). In
this frame, the region that agrees with hx � 2.0(1−d) has localised patterns of rather
characteristic shapes. These shapes rapidly fade away for higher fields. The value of
the LLE decreases and the size of the patterns decreases. The chaotic areas are not
compact, but inside they contain zones with regular behaviours. A very similar fading
pattern is found in [21], thus making it expectable when studying magnetic particle
systems.

Fig. 2 (left) Phase diagram displaying the LLE colour coded as a function of the field amplitude hx and
the distance d with ϕ = 0.5, η = 0.05, β = 1, hy = 1 and hz = 0.1. (right) Magnification of the black
box in (left). The black box in (left) is shown in Fig. 5. The specific dynamics (a–e) along the diagonal of
(left) are shown in Fig. 4. (Color figure online)
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Fig. 3 LLE and SLLE along the black line in Figure 2 (right), with the corresponding bifurcation diagrams
for φ1 and θ1. (Color figure online)

The LLE, the SLLE, and the maxima-based bifurcation diagram along the black
line of Fig. 2 (right) are presented in Fig. 3. The bifurcation diagram shows no apparent
change in density or distributionwhen the system transits from chaos into hyper-chaos.
The intermittent regimes present their maxima on bifurcated values that correspond to
what was obtained in Fig. 2 (right): first the chaotic characteristic shapes previously
mentioned, then the larger hyper-chaotic regime, and finally an iteration of chaotic,
hyper-chaotic, and periodic regimes.

The particular cases specified in Fig. 2 (right) are studied inmore detail in Fig. 4. The
first column shows the trajectory of dipole 1, so it can be compared with the trajectory
of dipole 2, on the second column. The third column shows the corresponding Fourier
spectrum of such trajectories. Row (a) shows the periodic state found for d = 0.550
and hx = 0.412. It is a simple example of a synchronised periodic 3-mode state,
as the Fourier plot shows. The range covered in the {mx ,my,mz} is very limited,
indicatingwhatwould be expected for lowfield amplitudes and short distances: dipolar
interaction dominates, allowing only a very restricted oscillation of the dipoles. For
d = 0.800 and hx = 2.034 (row (b)), the system enters unsynchronised chaos.
Although the trajectories are not equal for both dipoles, a rotation around the mx

axis is predominant in these dynamics. Both dipoles shift between the vicinity of
mx, j = {−1} and mx, j = {1}. The peak-spread Fourier spectrum is consistent with
the positive Lyapunov exponent found for these parameters in Figure 2 (right). The
system returns to periodicity when d = 0.824 and hx = 2.162 (row (c)). The increase
in bothfield anddistance allows for a greater rangeof {mx ,my,mz} to be coveredby the
trajectory. However, just like in the trajectories of row (a), the dynamics is confined to
the neighbourhood of eithermx = −1 ormx = 1, depending on the initial conditions.
A greater number of modes of oscillation are found in this synchronised periodic state,
with a relatively short excursion towards the mx equator. Row (d) (d = 0.935 and
hx = 2.709) shows hyper-chaotic trajectories for the dipoles. Although there seems
to be a prevalence of rotations around the mx axis (as in the chaotic regime of row

123



218 J Low Temp Phys (2015) 181:211–222

(a)

(b)

(c)

(d)

(e)

Fig. 4 Dipole trajectories (columns 1 and 2) and Fourier spectra (column 3) of the instances indicated in
Fig. 2 (right). The two first LLEs are: λ1 ≈ (−0.572 × 10−5, 0.203, 1.6 × 10−4, 0.245, 6.9 × 10−4) and
λ2 ≈ (−5.71×10−5, −1.3×10−5, −3.47×10−5, 0.11, 5.7×10−5), respectively. (Color figure online)
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Fig. 5 Phase diagram displaying the LLE and the SLLE colour coded as a function of the field amplitude
hx and the distance d. The range corresponds to the black box in Fig. 2 (right). (Color figure online)

Fig. 6 Phase diagram displaying the SLLE colour coded as a function of the driven frequency ϕ and the
field amplitude hx at hz = 0.1 (left) and hz = 1.0 (right). The fixed parameters are d = 1, β = 1, hy = 1
and η = 0.05. (Color figure online)

(b)), such instability allows for no apparent attractor. The trajectories are isotropic,
and the Fourier peaks are found on a broad range of frequencies. Row (e) shows what
Sparrow [3] described as noisy periodicity. The Fourier spectrum shows a number
of well-defined peaks in the lower frequencies, accompanied by some low-amplitude
high-frequency peaks. These broaden the possible trajectories without blurring the
general structure of the main periodic attractor. The result is a periodic orbit in a
deterministic system that seems to be under some form of noise [3].

Figure 5 shows a phase diagram displaying the LLE (left panel) and the SLLE (right
panel) colour coded as a function of the distance d and the field amplitude hx for the
black box in Fig. 2 (right). We can observe that a band of periodicity with granulated
chaotic regimes is found, and the hyper-chaotic domains are in reduced areas of the
parameter space. Hyper-chaos is, as expected, a subset of the regions with chaos. Most
of the periodic-chaotic granular regions have vanished in the case of hyper-chaos, thus
implying that scattered hyper-chaotic regimes in the midst of periodicity are rare, yet
not inexistent. The SLLE is on average around one order of magnitude below the LLE,
thus requiring a more solid refinement in the measure of the Lyapunov spectrum.
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Let us explore the dependence of driven frequency in the dynamical behaviour.
Figure 6 shows two phase diagrams displaying the SLLE colour coded as a function of
the frequency ϕ and the field amplitude hx for two different values of the homogeneous
external field hz . The left frame shows howperiodicity ismainly found in {ϕ � hx−2},
in {ϕ � 0.2}, and in the rectangle defined by {ϕ � 0.75, hx � 4} and the edges of the
frame. The rest of the frame is dominated by hyper-chaotic regimes. The larger chaotic
region has a shape similar to an Arnold’s tongue [51] in parametric instabilities. The
right frame of Fig. 6 shows a higher value of the homogeneous field, hz = 1.0. This
increment in the hz expands the regions with hyper-chaos. Thus, it becomes apparent
that no hx field is needed in order to find (hyper-)chaos, when ϕ � 0.75. In other
words, a high enough frequency and azimuthal field suffice for unstable dynamics
to occur. Periodicity dominates the regions {ϕ � 0.75(2.5hx − 1), ϕ > 0, hx > 0}
and {ϕ � 0.05hx , ϕ > 0, hx < 6}. Chaos and hyper-chaos are found in most of
the remaining region represented, with scattered islands of periodicity. The chaos-
periodicity boundaries of these islands also gave granulated hyper-chaotic regimes.

4 Final Remarks

The magnetisation dynamics of two anisotropic magnetic particles interacting via
dipolar interaction in the presence of a periodic transverse and a constant longitudinal
external magnetic field has been studied using the Landau–Lifshitz equation. We have
determined the regions of parameters that lead either to chaotic or to regular regimes
using the Lyapunov exponent method. Extensive numerical calculations have been
performed by varying two parameters simultaneously. The second largest Lyapunov
exponent was computed to identify hyper-chaos. This leads to phase diagrams of the
second largest Lyapunov exponent, and thus of the hyper-chaotic regimes, as a function
of these parameters. Generally, one finds rather intricately intermingled chaotic and
regular regions separated by diffuse boundaries. The regular regions consist of either
periodic or quasi-periodic solutions.

A descriptive analysis has been provided, justifying when dipole interaction dom-
inated the field and vice-versa. Although complex and rich, the patterns presented in
the parameter space have sometimes resembled structures already known from the
literature [38]. An account of such coincidences has been included whenever possi-
ble. The present characterisation of the parameter space determines when the chaos is
absent, and therefore, it can be used as a tool to control chaos in possible experimental
settings.

Finally, an assortment of representative phase-space trajectories has been presented
in this work, accounting for different kinds of periodicity, as well as chaos and hyper-
chaos. The corresponding Fourier plots provide additional support to the Lyapunov
spectra obtained for those particular states.

Cases of dipole synchronisation and anti-synchronisation were found in periodic,
chaotic and even the hyper-chaotic regimes. Future work will present a complete study
of the synchronisation phenomena.
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