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Universidad de Navarra, Pamplona, 31080, Spain

Jason A. C. Gallas

Departamento de F́ısica
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Nägelsbachstraße 49b, 91052 Erlangen, Germany

Ana M. Cabanas

Instituto de Alta Investigación
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Abstract. We report a systematic investigation of the magnetic anisotropy
effects observed in the deterministic spin dynamics of a magnetic particle in

the presence of a time-dependent magnetic field. The system is modeled by
the Landau-Lifshitz-Gilbert equation and the magnetic field consists of two
terms, a constant term and a term involving a harmonic time modulation. We
consider a general quadratic anisotropic energy with three different preferen-

tial axes. The dynamical behavior of the system is represented in Lyapunov
phase diagrams, and by calculating bifurcation diagrams, Poincaré sections and

Fourier spectra. We find an intricate distribution of shrimp-shaped regular is-
land embedded in wide chaotic phases. Anisotropy effects are found to play a
key role in defining the symmetries of regular and chaotic stability phases.
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1. Introduction. The understanding of the dynamical processes involved in the
magnetization of generic nanoparticles is a quite interesting and challenging prob-
lem. Indeed, this problem contains several complex phenomena which include mul-
tistability, quasiperiodicity, deterministic chaos, as well as complicated pattern for-
mation and evolution [54, 41, 32]. Experimentally, the detection and classification
of such complex behaviors is a virtually impossible task because it presupposes the
ability of tuning material properties continuously over rather extended parameter
ranges and external conditions. Theoretically, the description of stability phases
has been frequently restricted to the study of fixed-points, Hopf bifurcations and
other simple informations which are routinely derived from the equations of motion.

However, the availability of fast computer clusters combined with realistic models
offer the possibility to simulate more complicated dynamical processes numerically
like, e.g. periodic solutions with arbitrary period length and waveforms, and to dis-
cover novel material properties of interest. In this context, a first problem that needs
to be tackled is the determination of the control parameter regions that support
chaotic and regular behaviors. More specifically, one needs to compute phase dia-
grams displaying chaotic and regular stable phases, their extension and the detailed
shape of their boundaries. When dealing with nonlinear dynamical systems, phase
diagrams are frequently restricted to just a few isolated curves displaying boundaries
between steady-state (fixed-points) solutions and solutions emerging immediately
after them, either by Hopf or by other simple bifurcations. Furthermore, existing
phase diagrams tend to focus on unstable mathematical phenomena and/or situa-
tions that are not accessible in the laboratory. Even though deterministic chaos has
been studied intensively for over 30 years, phase diagrams detailing the structure of
chaotic phases with high-resolution have started to be reported only quite recently.
For recent surveys on this subject see, for example, Refs. [45, 29].

Nonlinear problems have been widely studied in magnetism [54, 41, 32]. Models
were used both for discrete [3, 52, 34, 35, 36, 46, 15, 37, 38, 44] and for continuous
magnetic systems [41, 32, 4, 17, 18, 50, 51]. Recently, the chaotic behavior of an uni-
axial anisotropic particle under a periodic magnetic field was studied in Refs.[15, 37].
Several experiments of chaotic behaviors in magnetic systems have been reported
[30, 1, 8, 16]. Typical magnetic samples are yttrium iron garnet spheres [30]. It is
worth mentioning that ferromagnetic resonance techniques have allowed to uncover
different routes to chaos, such as period-doubling cascades, quasi-periodic routes
to chaos, or intermittent routes. This obviously implies that there is no univer-
sal mechanism leading to chaos in these systems and, therefore, that a theoretical
description turns out to be highly non-trivial.

The characterization of the chaotic and regular phases using two-dimensional
phase diagrams displaying the largest Lyapunov of the exponents for a paramet-
rically driven uni-axial anisotropic magnetic particle has been recently studied in
Refs.[15, 37]. Since this type of anisotropy is a special one [41, 19], the aim of the
present manuscript is to investigate a more general system where one combines dif-
ferent anisotropy axes. This new assumption on the structure of the anisotropy will
modify the dynamical behaviors of the particles. The main goal of the present study
is to illustrate this more general setup. To this end, we have solve numerically the
dimensionless Landau-Lifshitz-Gilbert (LLG) equation containing a general qua-
dratic anisotropic energy. The paper is organized as follows: In Section 2, the
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theoretical model for a magnetic particle with a general quadratic anisotropy en-
ergy is presented. In Section 3 we report the numerical simulations together with a
discussion of the results. Finally, our conclusions are presented in Section 4.

2. Theoretical model. Let us consider a magnetic particle and assume that it
can be represented by a magnetic monodomain of magnetization M governed by
the dimensionless LLG equation

κ
dm

dτ
= −m× Γ− ηm× (m× Γ) , (1)

where m = M/Ms, τ = t|γ|Ms and κ = 1 + η2 [41, 3]. Here Ms is the sat-
uration magnetization that leads to |m| = 1, and γ is the gyromagnetic factor,
which is associated with the electron spin and whose numerical value is approx-
imately given by |γ| = |γe|µ0 ≈ 2.21 × 105mA−1s−1. Here, η denotes the di-
mensionless phenomenological damping coefficient, a material property typically
in the range from 10−4 to 10−3 in garnets and 10−2, or larger in cobalt or in
nickel or in permalloy [37], giving 1/κ ≈ 0.99 ' 1. Typical experimental values
of Ms are, e.g. Ms[Co] ≈ 1.42 × 106A/m ≈ 17.8 kOe for cobalt materials and

Ms[Ni] ≈ 4.8 × 105A/m ≈ 6 kOe for nickel materials, leading to |γ|Ms[Co] ≈
308GHz and |γ|Ms[Ni] ≈ 106GHz, respectively. Hence, the corresponding time

scales are (|γ|Ms)
−1 ≈ 3ps and (|γ|Ms)

−1 ≈ 6ps, respectively. Let us remark that
in these materials the macrospin approximation (monodomain particles) is valid for
particles sizes in the range of 10−20nm, because for smaller sizes surface anisotropy
effects (not included in the present study) are relevant [7] and for larger sizes non-
uniform magnetic states appear, like vortices in cobalt nanodots. In addition, the
shape of the particle plays an important role in the macrospin approximation [33].
Finally, the fact that |m| is conserved implies automatically that Eq. (1) describes
pure rotations of the magnetization in 3D space.

The effective magnetic field, denoted by Γ in Eq.(1), is given by

Γ = h +

3∑
j=1

αj (m · n̂j) n̂j , (2)

where h is the external magnetic field and αj measures the anisotropy along the nj
axis, such that subindexes (1, 2, 3) represent the principal axes. We denote them
in Cartesian coordinates as (x, y, z). We apply an external magnetic field h that
comprises both, a constant longitudinal and a periodic transverse part with fixed
amplitude and frequency

h = h0 + hT sin (Ωτ) , (3)

where h0 (‖ẑ), hT (⊥ẑ) and Ω are time independent. With this dimensional scaling,
the dimensionless fields and frequencies are h = H/Ms and Ω = ω/ (γMs). Since
the amplitude of field and the frequency are measured in units of Ms and (γMs),
respectively, one finds that for cobalt or nickel materials the typical order of mag-
nitude is 100 − 101 kOe and GHz. Here, we vary these values in the same range of
magnitude.

The second term of the right-hand-side of the Eq. (2) corresponds to the anisotr-
opy field. This term comes from anisotropy energy which essentially takes into
account the fact that the magnetic properties depend of the direction in which they
are measured [19]. This energy has contributions from different natures, like crystal,
magneto-static, or shape anisotropy.
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To first-order of approximation, the characterization of the anisotropy effect is
obtained by including the quadratic terms of m in the magnetic energy. In the
principal axes representation, these terms give our prototype field [41, 19]. Let us
remark that there are two special cases. The first one, called uniaxial anisotropy,
involves two coefficients which are zero. The standard configuration for this case
is αx = αy = 0, and αz 6= 0. The second particular case, that we call bi-axial
anisotropy, occurs when only a single coefficient is zero, for instance αz = 0. The
coefficients αj are related to the physical values through αj = 2Kj/(µ0M

2
s ) −

Nj where Kj are the physical anisotropy constants and Nj are the dimensionless
demagnetizing factors which depend of the particle shape [33, 48, 49, 10]. The values
of the anisotropy can be positive or negative, depending on the specific material and
sample shape in use [19, 42].

From the dynamical point of view, it is worth mentioning that anisotropic parti-
cles under stationary magnetic field have been studied previously in some particular
cases in Ref. [41] and uni-axial anisotropic particles under time-dependent magnetic
field have been numerically characterized in Refs. [3, 46, 15, 37, 38].

Finally, let us remark that for zero damping (η = 0) and without parametric forc-
ing (hx = hy = 0) Eq.(1) is conservative, and its dynamics can be derived from a
free energy functional, giving stationary or periodic solutions. Therefore, the inclu-
sion of the dissipation and the oscillatory injection of energy drives the precessional
dynamics into multiple instabilities. In such circumstance the magnetization of the
particle may exhibit complex dynamical behavior, e.g., quasi-periodicity, and chaos
[3, 15, 37]. In the next Section we provide a more exhaustive characterization of
the chaotic regime, including its dependence on the anisotropy constants as well as
on the magnetic field amplitudes, which shows elaborate and entangled patterns.

3. Simulations. This Section is divided into two parts. In the first subsection we
briefly discuss the quantities, which we use to characterize temporal regimes, and
in the second one some numerical results and their analysis are provided.

Figure 1. (Color online) Phase diagrams displaying the largest
Lyapunov exponent (LLE) color-coded as a function of the ampli-
tudes hx and hy for αx = αy = 1.0 (left) and αx = −αy = 1.0
(right). The fixed parameters are: Ω = 1.0, hz = 0.1, αz = 0 and
η = 0.05. The resolutions are ∆hx = ∆hy = 0.01.
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3.1. Dynamical indicators. First, we characterize the dynamics of Eq. (1) by
evaluating the Lyapunov exponents (LEs). This method consists of quantifying
the divergence between two initially close trajectories of a vector field [55, 28].
In general, for an effective N-dimensional dynamical system described by a set of
equations, dXi

/
dτ = F i (X, τ), the ith-Lyapunov exponent is given by

λi = lim
τ→∞

(
1

τ
ln

(∥∥δXi
τ

∥∥∥∥δXi
0

∥∥
))

, (4)

where ‖δXi
ξ‖ is the distance between the trajectories of the ith-component of the

vector field at time ξ. They can be ordered from the largest to the smallest: λ1 ≥
λ2 ≥ .... ≥ λN . The first exponent is the largest Lyapunov exponent (LLE). Due
to the fact that the LLG equation conserves the modulus of the magnetization |m|
and that the applied magnetic field is time dependent, the effective dimension of the
phase space is three. From a dynamical system point of view, only the largest LLE
may become positive for a system of dimension three. Therefore, by exploring the
dependence of the LLE on the different parameters of the system, one can identify
areas in control parameter space, where the dynamics is chaotic (LLE positive),
and those showing nonchaotic dynamics (LLE vanishing or negative). Nevertheless,
let us comment that since we are dealing with a one-frequency forced system, at
least one of its Lyapunov exponents is always zero; hence the simplest attractor is
a periodic orbit. Another possibility is to have two or three Lyapunov exponents
equal to zero and in these cases the system exhibits a two or three-frequency quasi-
periodic behavior.

Apart from the Lyapunov spectrum analysis, there are other methods of quan-
tifying the dynamical behavior of a system, for example, the Fourier spectrum,
Poincaré sections, or correlation functions just to mention few of them [54, 41, 52,
34, 3, 46, 15, 20, 39]. The classical technique to understand the time series of each
components of m is to take the Fast Fourier Transform (FFT) which gives a com-
plex discrete signal, S ($), in frequency space $ = ($1, ..., $n), producing a set of
pairs {$k, S ($k)}. For this signal we calculate its power spectrum |S ($)|. In gen-
eral, when |S ($)| has a finite number of discrete peaks, the time series is regular,
while if there is a continuum of peaks, the series can be chaotic. Let us mention
that the bifurcation diagrams using Poincaré sections of the magnetization angles,
given by m = (cosφ sin θ, sinφ sin θ, cos θ), was employed in Ref. [3] while the local
maximum of a specific component of m was used in Ref. [46]. In these diagrams,
when there is a continuum of points in the variable the behavior is quasi-periodic
or chaotic.

3.2. Numerical results. Many numerical schemes have been used to resolve the
LLG equation [41] and to avoid numerical artifacts, it is convenient to solve Eq. (1)
in the Cartesian coordinates [3]. In order to find the chaotic regimes, we have
integrated Eq. (1) via a standard fourth-order Runge-Kutta integration scheme with
a fixed time step dτ = 0.01 guaranteeing a precision of 10−8 for the magnetization
field. The Lyapunov exponents are calculated using the technique exposed in Refs.
[15, 55], such that the LEs are calculated for a time span of τ = 32768 units of time
after an initial transient time of τ = 1024 units has been discarded. The Gram-
Schmidt orthogonalization process is performed after every δτ = 1. The error Err
in the evaluation of the LEs has been checked by using Err = σ (λM ) /max (λM ),
where σ(λM ) is the standard deviation of the maximum positive LE. In all cases
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studied here Err is of the order of 1% or less, which is sufficiently small for the
purpose of the present analysis.

Figure 2. (Color online) Phase diagrams displaying the largest
Lyapunov exponent (LLE) color-coded as a function of the am-
plitudes hz and hx for (αx, αy, αz) = (4.0, 0,−1.0) (left) and
(αx, αy, αz) = (0, 4.0, 1.0) (right). The fixed parameters are:
Ω = 1.0, hy = 1.0 and η = 0.05. The resolutions are ∆hz = ∆hx =
0.01.

The main results are given in Figs. 1–6. In particular, we discuss the influence
of the magnetic field amplitudes and the anisotropy constants on the dynamics.
The choice of parameters ensures realistic values and avoids possible artifacts due
to a specific system and, therefore, provides a general description. Due to the large
number of control parameters involved in the system, we fix Ω = 1 and η = 0.05 for
the rest of the manuscript.

We compute two-dimensional phase diagrams illustrating the magnitude of the
LLE as a function of two parameters. This allows us to determine the parameter
ranges that lead to chaotic dynamics, i.e. positive LLEs, and those showing regular
(periodic or quasi-periodic) dynamics, LLEs zero or negative. In addition, following
a technique explained in Ref. [28], we use an iterative zoom resolution process to
investigate further the dependence of the dynamics upon very small variations of
system parameters. This technique is generally used for studying dynamical sys-
tems that contain chaotic phases with highly complicated and interesting boundary
topologies, e.g., curves where networks of stable islands of regular oscillations with
ever-increasing periodicities accumulate systematically.

Figure 1 shows a color-coded LLE phase diagram as a function of the oscilla-
tory field amplitudes hx and hy for a bi-axial anisotropic particle (αz = 0). The
left panel displays the case when both anisotropy constants have the same value
(αx = αy = 1). In this case, the chaotic regions appear in a circular symmetric
fashion pointing out an invariance of the LEs with respect to the orientation of
hT . Since the occurrence of chaos is independent of initial conditions and since
there is only a single basin of attraction for the dynamics, the orientation of hT

in the perpendicular plane is irrelevant for the position of the regions with positive
LEs. We observe that no chaos is found for small amplitudes of the oscillatory
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transverse field and that by increasing the field amplitudes, regions with chaos and
regions with regular dynamics alternate. The right panel in Fig. 1 shows the case
when anisotropy constants have opposite signs (αx = −αy = 1). We observe that
the circular symmetry is broken and a pattern of chaotic-regular regions appears.
Nevertheless, the LLE has a mirror-inversion symmetry with respect to hy = 0 and
hx → −hx. We can also observe that for small values of both amplitudes, approx-
imately inside the region, 0.761h2

x + 1.1hxhy + 8.232h2
y = 1, the system presents

regular states.

Figure 3. (Color online) (left) Magnification of the white box in
the left panel of Figure 2. (right) Magnification of the white box in
this left panel. The resolutions are (∆hz,∆hx) = (0.0032, 0.00166)
and (∆hz,∆hx) = (2.0× 10−4, 7.5× 10−5), respectively.

Figure 2 shows a color-coded LLE phase diagram given as a function of the field
amplitudes hx and hz of the periodic transverse and constant longitudinal fields,
respectively. We focus on two different cases of bi-axial anisotropic particle. In the
left panel the principal axes are (x̂, ẑ), while in the second panel they are (ŷ, ẑ).
In the left panel we can observe that for the complete range of hz studied, regular
solutions are found for small values of hx (hx . 0.3). For intermediate and large
values of hz, one observes again an alternation of chaotic and regular regions as
hx increases. On the other hand, the right panel of Fig. 2 shows that chaos is
suppressed for small values of both fields approximately inside the disk defined by
h2
x + h2

z = 1.2. Chaotic behavior is not observed for intermediate and higher values
of longitudinal field (hz & 3) irrespective of the value of hx, indicating that the
longitudinal field stabilizes the system. In the rest of the plotted area the chaotic
regions are not compact, but contain many areas of regular dynamics for specific
values of the field amplitudes.

In oder to explore in more detail the transitions among chaotic and regular states,
Figure 3 shows two successive magnifications of the left panel of Figure 2. These
magnifications are performed with higher resolution. In the left phase diagram
we can observe that there are special types of regular islands inside of chaotic
region. In fact, these islands have the shape of shrimps, structures that were first
discovered in the Hénon map [27] and, subsequently, have been found abundantly in
multiple branches of physics [28, 40, 21, 53, 23, 26, 11, 12, 43, 6, 2, 22]. Finally, the
magnification seen on the right panel of Figure 3 reveals an interesting pattern in the
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Figure 4. (Color online) Phase diagrams illustrating the largest
Lyapunov exponent (LLE) color-coded as a function of the
anisotropy constants αz and αx at αy = 0 (left) and αy = −2.5,
(right). The fixed parameters are: Ω = 1.0, hx = 2.45, hy = 2.45,
hz = 0.1, and η = 0.05. The resolutions in both cases are
∆αx = ∆αz = 0.02. Note that the parameter change seems to
simply shift the panels, one with respect to the other.

form of a regular self-similar succession of shrimps with characteristic accumulation
boundaries in phase diagrams [13].

Figure 5. (Color online) (left) Phase diagram displaying the
largest Lyapunov exponent (LLE) color-coded as a function of
the anisotropy constants αx and αy. The fixed parameters are:
Ω = 1.0, hx = 1.0, hy = 1.0, hz = 0.1, αz = 1.0 and η = 0.05. The
resolutions are ∆αz = ∆αx = 0.02. (right) LLE and bifurcation
diagrams of φ and θ as a function of the diagonal (white-) line αy(x)

given in the left panel.

Next, let us characterize the influence of the anisotropy constants on the resulting
dynamical behavior. Figure 4 shows phase diagrams as a function of the anisotropy



ANISOTROPY EFFECTS ON MAGNETIZATION DYNAMICS 217

2000 2050 2100 2150 2200
-1.0

-0.5

0.0

0.5

1.0

t

m
z

0 1 2 3 4 5 6

10-6

10-4

10-2

1.

f
†SHf
L§ê†S
HfL§ m

ax
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

my

m
z

-0.8 -0.6 -0.4 -0.2 0.0 0.2

-0.5

0.0

0.5

1.0

my

m
z

2000 2010 2020 2030 2040 2050

-0.5

0.0

0.5

1.0

t

m
z

0 1 2 3 4 5 6

10-6

10-4

10-2

1.

f

†SHf
L§ê†S
HfL§ m

ax

-0.2 -0.1 0.0 0.1 0.2

0.95

0.96

0.97

0.98

0.99

my

m
z

2000 2005 2010 2015 2020 2025 2030

0.95

0.96

0.97

0.98

0.99

1.00

t

m
z

0 1 2 3 4 5 6

10-6

10-4

10-2

1.

f

†SHf
L§ê†S
HfL§ m

ax

0 1 2 3 4 5 6

10-6

10-4

10-2

1.

f

†SHf
L§ê†S
HfL§ m

ax

2000 2020 2040 2060 2080 2100
-0.5

0.0

0.5

1.0

t

m
z

-0.5 0.0 0.5

-0.4

-0.2

0.0

0.2

0.4

0.6

my

m
z

0 1 2 3 4 5 6

10-6

10-4

10-2

1.

f

†SHf
L§ê†S
HfL§ m

ax

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0-1.0

-0.5

0.0

0.5

1.0

my

m
z

2000 2020 2040 2060 2080 2100
-1.0

-0.5

0.0

0.5

1.0

t

m
z

Figure 6. 2D Poincaré sections of (mz,my) taken at time interval
multiples of 2π/Ω, the time series of mz, and its corresponding
power spectrum |S ($)| for αy(x) = (−3.5,−0.3, 0.95, 3.27, 4.95).
The dashed line in the time series represents |m|. The other fixed
parameters are the same as the ones used in Figure 5.

coefficients αx and αz for αy = 0 (left) and αy = −2.5 (right). The case αy = 0 is
again for a bi-axial particle, nonetheless the LLE diagram exposes a quite complex
scenario without any symmetry. In the parameter region where the anisotropies
are small and intermediate (−1.7 . αx . 1.5 and −0.4 . αz . 1.2) the system
exhibits periodic states. For small anisotropies, this behavior can be explained by
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the fact that nonlinear terms are small and the constant field plays the major role
in the dynamics. For negative values of αx almost above the curve with equation,
αz = 0.04165α2

x + 0.45833αx + 4.25, the system behaves in a regular fashion. Note
that inside the main chaotic areas there are still windows without chaos. On the
other hand, the right panel of Figure 4 shows the diagram for a complete anisotropic
particle (αj 6= 0). We can observe a similar pattern which is slightly rotated and
elongated with respect to the previous frame. Here, the approximate line over
which the system has regular states is given by αz = 0.17α2

x + 1.32αx + 3.5, such
that αx < 0.

The leftmost panel in Figure 5 displays a phase diagram as a function of the
anisotropy coefficients αx and αy at αz = 1.0. This diagram shows symmetric
behaviors under reflection about the diagonal line αy = αx, We call this diagonal
αy(x) and indicate it by a dashed line in the figure. For negative values of both
constants one can observe that the states are periodic approximately inside the
region, α2

x + α2
y = 3.72. The same happens for the region above the curve αy =

0.0625α2
x + 0.525αx + 3.3 when αx . 0.5 and for the region below the curve αy =

−1.64α2
x + 13.97αx − 28.46 when αx & 2.6. In the remaining areas the system

is mainly chaotic but contains complex topological islands of regular behaviors.
To explore in more detail the dynamical behaviors occurring in the diagonal line,
αy(x), the right panel of Figure 5 presents a comparison of the LLE and bifurcation
diagrams of the angular variables (φ, θ). By increasing the parameter, we observe
that the system starts in a periodic state and makes an abrupt transition to a chaotic
behavior. After that, an alternation of regular and chaotic behaviors is found upon
further increase of αy(x). In addition, with the comparison of the LLE and the
bifurcation diagrams one can determine precisely the segments where the regular
phases correspond to periodic or quasi-periodic states. For instance, quasi-periodic
oscillations can be identified in range (0.032, 1.77).

In order to illustrate different nonchaotic regimes appearing along the αy(x) diag-
onal, in Figure 6 we show a 2D Poincaré section of (mz,my) at time-intervals mul-
tiple of 2π/Ω, the time series of mz, and its corresponding power spectrum |S ($)|
for five representative values of αy(x), namely −3.5,−0.3, 0.95, 3.27 and 4.95. From
this figure, one sees that for −3.5 and −0.3 the system presents periodic states,
while the other three parameters exhibits more complex quasiperiodic behaviors.
In fact for αy(x) = 0.95 the Poincaré section shows a semi-torus.

4. Final remarks. The dynamics of the magnetization of an anisotropic particle
in the simultaneous presence of a constant and a periodic time-dependent external
magnetic field has been studied in the framework of the Landau-Lifshitz-Gilbert
equation.

In previous works, we investigated the control parameter space for particles un-
der conditions of uniaxial anisotropy [15] and also when subjected to a quasiperiodic
magnetic field[38]. In contrast, here we considered the more general situation of par-
ticles under bi-axial anisotropy. We determined the regions in control parameter
space where positive Lyapunov exponents (chaos) exist and the theoretical bound-
aries for the thresholds of the chaotic regime. We performed extensive numerical
calculations of Lyapunov exponents while varying simultaneously two selected con-
trol parameters. This resulted in detailed stability charts of the chaotic and regular
phases as a function of these parameters.

In this more general situation, we now find anisotropy to play an important role in
creating an additional number of novel possible dynamical behaviors for the particle.
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For bi-axial particles, when the anisotropy coefficients have the same values, the
2D LLE-diagram exhibits a circular shape symmetry as a function of driving field
amplitudes. In contrast, when the coefficients have different signs this circular
symmetry is broken, but the LLE-diagram still displays a composed inversion mirror
symmetry. We found driven anisotropic particles to present multiple transitions
between regular and chaotic states.

An interesting type of localized islands of regular patterns was discovered in-
side the chaotic regions. Such structures display the same peculiar shrimp-shaped
structure familiar from many other (non-magnetic) systems [27, 40, 21]. To our
knowledge this is the first time that such structures are reported in the magnetic
context. These structures are known to be linked to the universal class of dynamics
observed in homoclinic Shilnikov chaos [53, 5], although it is also known that spi-
rals of shrimps also appear in situations unrelated to Shilnikov chaos [23, 26]. The
global organization of complex structures is still poorly understood, and magnetic
particles offer an alternative system for further investigations.

In addition to a detailed classification of the chaotic regions, the phase diagrams
reported here also display extended domains where regular behavior is predominant.
Some time ago, the control space of a damped-driven Duffing oscillator was shown
to display certain recurring complex structures [14] which resemble somewhat the
ones seen here in Figures 2 and 3. It would be interesting to investigate if such
resemblance indeed exists and what is the extension of these similarities, if any.
Furthermore, it should be interesting to compute isospike diagrams [24, 25, 47, 31],
i.e. phase diagrams displaying the number of spikes contained in one period of every
periodic oscillation. As described in a recent review paper [29], such diagrams
provide detailed information about the complexification of periodic patterns when
parameters are tuned continuously.
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