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Abstract. In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles

down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of non-

spherical elongated particles. Thus, a systematic study of the system response is performed varying the particle

aspect ratio and the plane inclination. Similarly to the case of spheres, we observe three well-defined regimes:

arresting flows, steady uniform flows and accelerating flows. Both steady and dynamic macroscopic fields are

derived from microscopic data, by time-averaging and spatial smoothing (coarse-graining), including density,

velocity, as well as the kinetic and contact stress tensors. The internal morphology of the flow was quanti-

fied exploring the solid fraction profiles and the particle orientation distribution. Furthermore, the system’s

characteristic time and length scales are investigated in detail. Our aim is to achieve a continuum mechanical

description of granular flows composed of non-spherical particles based on the micromechanical details. Thus,

to evaluate the influence of particle shape on the constitutive response in granular of those systems. However,

to meet the proceeding’s page restrictions here we will only discuss the dependence of some terms of the con-

tinuum averaged equations on the coarse-graining scale, specifically the case of the kinetic part of the stress

tensor.

1 Introduction

Granular flows [1] usually show quite complex behaviors

that are also found in diverse systems, such as colloidal

suspensions [2], pedestrian dynamics [3] and animal herds

[4]. Unfortunately, a complete theoretical framework or

rheological model explaining the constitutive response of

granular systems is not available yet. However, several

promising approaches have recently been published [5–7],

and it is known that several modes of energy dissipation,

such as mechanic friction or plastic deformations lead to

non-equilibrium steady state situations.

In examining granular flows there are several experi-

mental restrictions, due to the opaque nature of the grains.

Thus, full access to the 3D- behavior of the grains is gen-

erally not feasible and, hence, there is a real need to per-

form numerical simulations in this framework. Discrete

element modeling (DEM) is widely accepted as an effec-

tive method to address engineering problems concerning

dense granular media [8]. Moreover, in typical applica-

tions the formulation of granular macroscopic fields are

also necessary. The micro-mechanical details, i.e. veloc-

ity and position of individual particles, allow one to find

the continuum field profiles using coarse-grain averaging

technique [9–13]. Furthermore, with this homogenization

approach, the static and dynamic parts of the stress tensor

�e-mail: raulcruz@unav.es
��e-mail: t.weinhart@utwente.nl

are deduced in terms of contact forces and velocity fluctu-

ations, respectively.

Although spherical particles are a special case in na-

ture, the majority of both experimental and numerical

studies have considered packings of spherical particles so

far. However, the appropriate description of systems com-

posed of non-spherical particles is of significant impor-

tance for practical applications such as the handling of

rocks, rice, wheat or tablets. Thus, there is currently and

increasing interest in the behavior of non-spherical grains

both experimentally [14–17] and numerically [18, 19].

The goal of this study is to extend existing theories of

frictional avalanching flows of spherical particles in steady

state situations, to the case of non-spherical grains. The ul-

timate aim is to achieve a continuum-mechanical descrip-

tion of granular flows composed by non-spherical grains

based on micromechanics, This will help us to understand

the role that particle shape plays in governing the system’s

mechanical response.

Our DEM simulations and the coarse-grain averaging

technique [9–13] allows us to compute the mean velocity,

density and stress fields in detail. However, the paper size

limitation precludes us to present a complete description.

Here we will only discuss the dependence of some terms

of the continuum averaged equations on the size of the av-

eraging domain, specifically the case of the kinetic part

of the stress tensor, which is know to be scale-dependent

[10–13] even for spherical particles.
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Figure 1. Snapshot of a system of 32768 spherocylinders with

elongation of ξ = 3. Sketch of the interaction among two parti-

cles is also shown.

2 DEM and Coarse-Graining Formulation

We have developed a hybrid GPU-CPU discrete element

algorithm to investigate granular chute flows of rod-shaped

particles. In the model, the rods are considered sphero-

cylinders characterized by their length l and sphero-radius

r. Thus, their aspect ratio is defined by ζ = (l+2r)/2r (see

figure 1). For calculating the interaction force between

two particles i and j, �Fi j, we use an algorithm based on

the concept of spherocylinder [20], which is defined by

two vertices and the sphero-radius r; the surface of a sphe-

rocylinder is delineated by all points at distance r from

the edge between the two vertices. Thus, the contact de-

tection between to spherocylinders is reduced to find the

closest point between two edges, resulting an overlap dis-

tance δ, defined by the overlap of two spheres of radius

r. Fig.1 illustrates the sketch of the interaction between

two spherocylinders. Thus, the force �Fi j exerted on par-

ticle i by the particle j is defined by: �Fi j = − �F ji. The

force �Fi j can be decomposed as �Fi j = Fn · �n + Ft · �t,

where Fn is the component normal to the contact plane

�n. Additionally, Ft acts on the tangential direction �t. To

define the normal interaction Fn, we use a linear elastic

force, which is governed by the overlap distance δ between

two spherocylinders. To account for dissipation, a veloc-

ity dependent viscous damping is assumed. Hence, the

total normal force reads as Fn = −knδ − γnmrv
t
rel

, where

kn is the spring constant in the normal direction, mr =
mp

2

stands for the pair’s reduced mass, γn is the damping co-

ζ 1.01 1.3 1.5 2.0 2.5 3.0

Np 5664 8448 10752 17824 26784 37632

efficient in the normal direction and vn
rel

is the normal rela-

tive velocity between i and j. The tangential force Ft also

contains an elastic term and a tangential frictional term

accounting for static friction between the grains. Taking

into account Coulomb’s friction constrain, which reads as,

Ft = min{−ktξ − γtmr · |v
t
rel
|, μFn}, where γt is the damp-

ing coefficient in tangential direction, vT
rel

is the tangential

component of the relative contact velocity of the overlap-

ping pair. ξ represents the elastic elongation of an imag-

inary spring with spring constant kt at the contact, which

increases as
dξ(t)

dt
= vt

rel
as long as there is an overlap be-

tween the interacting particles. The elastic tangential elon-

gation �ξ is kept orthogonal to the normal vector (truncated

if necessary) [11]. μ is the friction coefficient of the parti-

cles.

We use a coordinate system where x denotes the flow

direction, z the in-plane vorticity direction, and y the

depth direction normal to the base. The chute is in-

clined at an angle θ such that gravity acts in the direc-

tion (sin(θ),−cos(θ), 0). The size of the simulation cell

was Lx = Lz = 16 l and Ly = 32 l with periodic bound-

aries conditions on the x− and z− directions. The base

of the system is a rough surface consisting of Nb = 385

fixed particles spherical particles with R = l/2. Note those

conditions resemble one particular surface roughness of

Ref.[12]. Moreover, similar to Ref.[12] we have use kt =

(2/7)kn, γt = γn with en = 0.88 and ρp = 2500. The mi-

croscopic friction coefficient is set to μ = 0.5, the gravity

to g = 1 and kn = 2 × 105mpg/l.

In the simulations presented here, all particles are

mono-dispersed with the same length l = 1/8. Simula-

tions are computed using rods of different aspect ratios,

from ξ = 1.01 to ξ = 3.0, but always keeping the total

mass of particles of MT ≈ 1.4× 104. In each case, the val-

ues of r and Np are adjusted to the choice of ζ (see Table

1). The Np flowing particles are introduced to the system

at random non-overlapping positions well above the base.

The gravity field induces the particle motion and they fall

and accelerate down the plane until they reach a steady

state, which is then analyzed.

In order to explore the dynamical and mechanical

properties of the particle flow, a coarse graining method-

ology is used to analyze the results [9–13] The numerical

data provide the position and velocities of every particle as

well as the particle interaction forces. According to [10–

12], the macroscopic mass density of a granular flow at

time t is defined by ρ
(
�r, t

)
=

∑Np

i=1
miφ

(
�r − �ri(t)

)
where

the sum runs over all the particles within the system and

the coarse-grained (CG) function, φ(�R). In our case, we

use a truncated Gaussian coarse-graining function φ(�R) =

Awe
−(|R|/2w)2

with cutoff rc = 6w where the value of w

defines the coarse-grained scale. Aw is calculated in or-
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Table 1. Particle’s elongation ζ and number of particles used in

each case. In all cases, we kept total mass MT ≈ 1.4 × 104.



der to guarantee the normalization condition. Thus, the

flow solid fraction can be found ϕ
(
�r, t

)
= ρ

(
�r, t

)
/ρp,

where ρp is the material density. In the same way, the

coarse grained momentum density function P(�r, t) is de-

fined by P(�r, t) =
∑Np

i=1
mi�viφ

(
�r − �ri(t)

)
, where the �vi rep-

resent the velocity of particle i. The macroscopic velocity

field �V(�r, t) is then defined as the ratio of momentum and

density fields, V(�r, t) = P(�r, t)/ρ(�r, t).

On the other hand, the mean stress field σ̄αβ is com-

posed by the mean contact stress field σc
αβ(�r) and the

mean kinetic stress field σk
αβ(�r). The spatial behavior of

σc
αβ(�r) can be deduced in terms of the microscopic enti-

ties that characterize each contact, i.e. �Fi j and the position

of the contacting particles ri and r j [10–12]. In general

the outcomes obtained for σc
αβ(�r) are independent of the

coarse-graining scale.

Following Refs.[9–12], the kinetic stress reads as,

σk
αβ(�r) =

Np∑

i

miv
′
iαv

′
iβφ

(
�r − �ri(t)

)
, (1)

where the sum runs over all the particles, �v′
i

is the velocity

fluctuation of particle i, respect to the mean field. �v′
i
(�r, t) =

�vi(t)− �V(�r, t). Note that the velocity fluctuation are defined

with respect to the center of the averaging volume at �r.

Very recently, Artoni and Richard [13] has proposed to

define the velocity fluctuation of the particles respect to the

particle location�ri. As a result they found a decomposition

of the kinetic stress tensor in two terms. The first, T k
αβ(�r),

that is independent of the averaging domain size and a new

term

T
γ
αβ

(�r) = ρ(D · ∇�V(�r, t))(D · ∇�V(�r, t)) (2)

Remarkably, the correction T
γ
αβ

(�r) accounts for the depen-

dence of averaging domain size, the used coarse-graining

function, particle shape and polidespersity. Following

their scheme the vector D read as,

ρDk(�r) =

Np∑

i=1

mi(xk − xi(t))
2φ

(
�r − �ri(t)

)
(3)

Hence, using Eqs(1) and (2) one can find

T k
αβ(�r) = σk

αβ(�r) − T
γ
αβ(�r). (4)

2.1 Results and Discussion

The particles are introduced in the system at random posi-

tions. Thus gravity induces their motion and they fall and

accelerate down the plane. Here, we will only discuss re-

sults corresponding to certain domain of angles in which

the system reaches a steady state of motion on the x direc-

tions. To obtain detailed information about steady flows,

we used the expressions defined above and [10–12]. Since

the flows are uniform in x and z, we further averaged over

those directions. Thus, we obtained the time-, width- and

length-averaged density ρ(y), momentum density P(y) and

velocity V(y) = P(y)/ρ(y) fields (data not shown). The

spatial profiles of the coarse contact stress, σc
αβ(�r), was
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Figure 2. Vertical profiles of the xx component of the kinetic

stress σk
xx(y) calculated using Eq.(1) as a function of y. The

fields are deduced using using a Gaussian coarse-graining func-

tion φ(�R) with different values of w. Results for several particle

elongation are shown: a) ζ = 1.01, b) ζ = 1.5, c) ζ = 2.0, d)

ζ = 3.0.
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Figure 3. Vertical profiles of the zz component of the kinetic

stress σk
zz(y) calculated using Eq.(1) as a function of y. The

fields are deduced using using a Gaussian coarse-graining func-

tion φ(�R) with different values of w. Results for several particle

elongation are shown: a) ζ = 1.01, b) ζ = 1.5, c) ζ = 2.0, d)

ζ = 3.0.

also computed in all cases (data not shown). Our outcomes

are totally consistent with earlier findings [11, 12].

It is important to remark that in dense granular flows,

the values of σk
αβ(�r) generally result several orders of

magnitude smaller than σc
αβ(�r). However, the spatial pat-

tern of σk
αβ(�r) has been successfully used to distinguish

between the role of force chains and velocity fluctuations

in applications [21]. That’s why a precise calculation of

σk
αβ(�r) is necessary. Next we discuss the dependence

of some components of the tensor σk
αβ(�r) on the coarse-

graining scale, as well as the role that the velocity gradi-

ents play.
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In figure 2, the profiles of the xx component of the ki-

netic stress σk
xx(�r) are illustrated. We present systematic

study, with results obtained using particles with four dif-

ferent elongations are shown. The fields were deduced us-

ing using a Gaussian coarse-graining function φ(�R) with

different values of w. As it noticeable, the values of

σk
xx in general depends on w. Those results correlate

with the fact that ∂Vx

∂y
� 0, which causes to the depen-

dency of the results on the averaging domain size. How-

ever, as it was obtained earlier [10–12], there is a length

scale much less than a particle diameter d, where the ki-

netic stress can be accurately computed using Eq.(1). The

consistency of our outcomes is proven by the values of

T k
xx(y) = σk

xx(y)−T
γ
xx(y), which are also shown for compar-

ison in figure 3. Note that computing T
γ
xx(y) involves the

calculation of the components of the vector Dk(ζ), which

depends on the coarse graining function φ(�R), the coarse

graining scale w2, and the particle elongation ζ. Once the

system reaches a steady state of motion on the x directions

we can find T
γ
xx(y) = Dk(ζ)

(
∂Vx

∂y

)2
and the other compo-

nents of T γ(y) diminishes. For the case of spherical parti-

cles and a Gaussian coarse-graining function φ(�R) with w,

result Dk(ζ = 1) = w2. The values Dk(ζ) in terms of Dk(1)

are shown for clarifying purposes.

In figure 3, the profiles of the zz component of the ki-

netic stress σk
zz(y) are illustrated. As it is noticeable, the

component σk
zz(y) in general do not depend on w and all

the curves collapse. The fact that the only non zero compo-

nent of the velocity gradient is ∂Vx

∂y
, leads to T

γ
zz(y) ≈ 0 and,

accommodatingly, the outcomes of σk
zz(y) are independent

of the averaging domain size. Similar outcomes are ob-

tained for the profiles of the yy component of the kinetic

stress σk
yy(y), which is consistent for symmetry reasons.

Summarizing, we used a hybrid CPU/GPU implemen-

tation of DEM, examining the steady-state flow of 3D non-

spherical particles down an inclined plane. A system-

atic study of the system response was performed varying

the particle aspect ratio and the inclination angle. Sim-

ilarly to the case of spheres, we observed three well-

defined regimes: arresting flows, steady uniform flows

and accelerating flows. Both steady and dynamic macro-

scopic fields were derived from microscopic data, by time-

averaging and spatial smoothing (coarse- graining). Here,

we have discussed that the values of σk
xx(y), in general

depends on w. This results correlates with the fact that
∂Vx

∂y
� 0, with the definition of the velocity fluctuation with

respect to the center of the averaging volume. However,

we also found there is a length scale much less than a

particle diameter d, where the dependence on the coarse

graining scale is diminished. The consistency of our out-

comes was tested comparing with the scale free kinetic

stress T k
xx(y) (see Eq.(2) and Ref.[13]). In our case, we

found that the relevant component of Dk(ζ) depends on

the coarse graining scale w, and the particle elongation ζ.

Our ultimate aim is to achieve a continuum mechanical de-

scription of granular flows composed by non-sherical par-

ticles based on the micromechanical details and evaluate
the influence of particle shape on the constitive response

of those systems.
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