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h i g h l i g h t s

• A granular gas of rods has been simulated with DEM implemented on GPU.
• A homogeneous cooling state of frictionless 3D rods has been identified.
• Haff’s Law is satisfied when introducing of a novel characteristic time.
• The energy equipartition between degrees of freedom has been clarified.
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a b s t r a c t

In this work, we report some theoretical results on granular gases consisting of frictionless
3D rods with low energy dissipation.We performed simulations on the temporal evolution
of soft spherocylinders, using amolecular dynamics algorithm implemented on GPU archi-
tecture. A homogeneous cooling state for rods, where the time dependence of the system’s
intensive variables occurs only through a global granular temperature, has been identified.
Wehave found a homogeneous cooling process,which is in excellent agreementwithHaff’s
law, when using an adequate rescaling time τ(ξ), the value of which depends on the par-
ticle elongation ξ and the restitution coefficient. It was further found that scaled particle
velocity distributions remain approximately Gaussian regardless of the particle shape. Sim-
ilarly to a system of ellipsoids, energy equipartition between rotational and translational
degrees of freedomwas better satisfied as one gets closer to the elastic limit. Taking advan-
tage of scaling properties, we have numerically determined the general functionality of the
magnitude Dc(ξ), which describes the efficiency of the energy interchange between rota-
tional and translational degrees of freedom, as well as its dependence on particle shape.
We have detected a range of particle elongations (1.5 < ξ < 4.0), where the average en-
ergy transfer between the rotational and translational degrees of freedom results greater
for spherocylinders than for homogeneous ellipsoids with the same aspect ratio.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Granularmaterials are commonly handled in everyday life and are involved inmany industrial processes. For this reason,
the study of their kinetic andmechanical properties is a very active research field [1,2]. Nevertheless, although these systems
have been thoroughly examined in the past, they still reveal relevant and unexpected results [1,2].
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Granular gases are very dilute systems of macroscopic grains, which move randomly loosing energy through inelastic
collisions. Thus, in the absence of any external driving force, their energy uniformly decreases towards an homogeneous
cooling state (HCS). In that condition, the time dependence of all its intensive variables results only from the global
granular temperature [3,4]. For highly dissipative systems, however, the HCS rapidly becomes unstable and the system
subsequently evolves into an inhomogeneous state where the cooling process notably slows down [5,6]. Consequently, the
correlation between the particles’ motion determines the rate of energy loss and large inhomogeneities in the density field
are observed [5,7].

A number of theoretical studies have carefully analyzed particle–particle interactions during collision, explaining how
inelasticity emerges from such interactions [8–10]. For soft grains, in which the repulsion force depends linearly on
deformation, a constant restitution coefficient can be recovered [11,12] and, consequently, cooling kinetics following Haff’s
lawwould be expected. There is also experimental evidence ofmaterialswith variable restitution coefficients that depend on
the relative velocity of the interacting particles. For instance, assuming nonlinear elastic repulsive forces (Hertzian contact)
leads to a notably different algebraic decay of the system energy during the HCS [9].

On the other hand, in granular gases of spherical particles roughness leads to correlations between the translational and
rotational degrees of freedom [13–15]. In general, both translational and rotational kinetic energies decrease with the same
power law but differ from each other due to the breakdown of energy equipartition. Years ago, these correlations were
quantified for a system of agitated rough spheres [16,17]. More recently, simulations of 3D gases of rough spheres shed light
on the nontrivial process of energy interchange between the translational and rotational degrees of freedom, showing that
the spin of a single grain can be correlated with the particle linear velocity [18,19].

The effect of particle shape on the kinetic evolution of granular gases has been studied by Aspelmeier and other
researchers [20]. They developed a kinetic theory of hardneedles based on the assumption of a homogeneous cooling state, in
the very dilute limit. Hence, it was found that energy interchange between rotational and translational degrees of freedom is
controlled by themacroscopic restitution coefficient andby the particle spatial distribution ofmass. In recent years, there has
been an increasing interest in the behavior of non-spherical grains both experimentally [21–26] and numerically [27–30].
Here, the primary interest is also focused on the evolution in time of the translational kinetic energy and rotational energy.
Thus, it has been commonly found that in granular gases of elongated particles equipartition is not obeyed.Moreover, several
details of the cooling process depend on particle aspect ratio, mass distribution of the grains and the driven mechanisms.

In the present work, we investigate the free cooling of a granular gas of elongated 3D particles, and both the role of
inelasticity and the particle shape in the overall kinetic processes are analyzed. The paper is organized as follows: in Section 2
we introduce some basic concepts about the kinetics of granular gases, in Section 3 we described the numerical model and
implementation of our algorithm, Section 4 discusses the results of the homogeneous cooling state of a system of frictionless
rods. At the end, conclusions and outlook are drawn.

2. Homogeneous cooling state of rods

In a gas of spherical particles of radius a in HCS, the kinetic energy decreases homogeneously and the time evolution of
all variables occurs only through their global temperature. By introducing the dimensionless translational temperature T
and rotational temperature R as well as a characteristic time τ , Luding et al. [31] found that the kinetics of a granular gas of
rough spheres is governed by the system of equations,

d
dτ

T = −AT 3/2
+ BT 1/2R

d
dτ

R = BT 3/2
− CT 1/2R

(1)

where A, B and, C are constants that depend on space dimensionality (see details in Ref. [31]). In 3D, A =
1−e2n
4 + η(1 − η),

B =
η2

q and C =
η

q


1 −

η

q


, where η =

q(1+et )
(2q+2) (in 3D q =

2
5 for spheres) and en and et are the restitution coefficients in

normal and tangential directions respectively. The equilibrium Enskog’s collision rate for the initial temperature T (0) reads
as

Gsph(a) = 8(2a)2
N
V


π

m
g(2a)T 1/2(0) (2)

where N is the number of particles per unit of volume,m and V are the mass and volume of the particles, respectively.
This variable is commonly used to rescale time according to τ =

2
DGspht , whereD accounts for the number of translational

degrees of freedom. It has been found that in general the principle of equipartition does not necessarily apply, resulting
asymptotically in Ttr(τ )/Trot(τ ) ≠ 1.

The HCS of systems consisting of frictionless oblate and prolate ellipsoids has been recently examined [27,28].
There, it was introduced a granular temperature Ttot(t) of the gas as a weighted average of Ttr =

2
3N

N
i=1

1
2mv2

i and
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Trot =
1
N

N
i=1

1
2 Iω

2
i with the weights given by the respective degrees of freedom:

Ttot(t) =
3
5
Ttr(t) +

2
5
Trot(t). (3)

Villemot and Talbot [27] found that for a gas of frictionless elongated elastic ellipsoids the principal of equipartition
holds [27] and, accordingly, the energy stored in the rotational Trot(t) and translational Ttr(t) degrees of freedom equally
evolve in time, tending asymptotically towards Ttr(t)/Trot(t) ≈ 1. They also observed that Ttot followed Haff’s Law [32]

Ttot(τ )

Ttot(0)
=

1

(1 + τ)2
, (4)

when choosing an appropriate time scale τ = αGellipt , where α =
1−e2n
2D and D = 5 was interpreted as the total number

of degrees of freedom among which energy is transferred [27]. Moreover, the collision frequency Gellip was analytically
derived [27]. Those results motivated us to examine the HCS of dissipative frictionless rods.

Assuming the existence of a HCS for frictionless rods, onemay argue that themean field schememay also apply to a dilute
gas of rods. Again the energy lost can be entirely described by the particles restitution coefficient en and the evolution of the
granular temperature would obey Eq. (4). Hence, for the cooling dynamics of rods, we propose a new characteristic time,
τ = αGrdt = αDcGspht , which is written in terms of the collision frequency Gsph of a sphere with the same volume. Note
that Dc measures the average energy transfer between rotational and translational degrees of freedom due to collisions.
As we pointed out earlier, for ellipsoids there is an analytical expression of Gellip [27], but for rods this analytic description
remains unrevealed. In this paper, we take advantage of the homogeneous properties of the HCS of rods to numerically find
the functionality of Dc , according to the particle elongation.

3. Numerical model

Wehave developed a hybridGPU–CPUdiscrete element algorithm for simulating three-dimensional spherocylinders. The
present implementation is based on a similar algorithm of rough spheres [33] that has been recently introduced in CUDA
(Computer Unified Device Architecture), which is a parallel computing platform by NVIDIA [34]. The application developed,
as most GPGPU software, has a heterogeneous architecture. This means that some pieces of code run on the CPU and others
on the GPU.

In the model, the rods are considered as sphero-cylinders, which are characterized by their length l and sphero-radius r .
Thus, it aspect ratio is defined by ξ = (l + 2r)/2r . For calculating the contact interaction, F⃗ij, we use an efficient algorithm
proposed by Alonso-Marroquín et al. [35,36], allowing the simulation of a large number of particles. This numerical method
is based on the concept of spheropolygons, i.e., a polygon i is defined by the set of vertices Vi and edges Ei. A spherocylinder is
the simplest spheropolyhedron and it has two vertices and one edge, thus the contact detection between to spherocylinders
is reduced to find the closer point between two segments. Afterwards, two imaginaries spheres can be drawn on each
spherocylinder. Thus, the interaction is equivalent to the inter-penetration between the two neighboring spheres of radius
r . Thus, the force F⃗ij exerted on particle i by the particle j is defined by: F⃗ij = −F⃗ji. Hence, the local interaction between
two particles in contact is only governed by the overlap distance δ between two segments. The force F⃗ij can be decomposed
as F⃗ij = FN

· n⃗ + F T
· t⃗ , where FN is the component in normal direction n⃗ to the contact plane. Complementary, F T is

the component of the force in the tangential direction t⃗ . To define the normal interaction FN , we use a linear elastic force
proportional to the overlap distance δ. Fig. 1(a) illustrates the sketch of the interaction between two spherocylinders. The
corresponding neighboring spheres have been highlighted as well as the normal and tangential directions. To account for
dissipation, a velocity dependent viscous damping is assumed. Hence, the total normal force reads: FN

= −kNδ − γ Nmrv
N
rel,

where kN is the spring constant in the normal direction, mr =
mimj

(mi+mj)
=

m
2 stands for the pair’s reduced mass, γ N is the

damping coefficient in the normal direction and vN
rel is the normal relative velocity between i and j. The tangential force F T

also contains an elastic term and a tangential frictional term accounting for static friction between the grains. Taking into
account Coulomb’s friction constrain, which reads as, F T

= min{−kT ξ − γ Tmr · |vT
rel|, µFN

}, where γ T is the damping
coefficient in tangential direction, vT

rel is the tangential component of the relative contact velocity of the overlapping pair.
The variable ξ represents the elastic elongation of an imaginary spring with kT at the contact [37]. The elongation increases
or decreases according to dξ(t)

dt = vT
rel depending on the overlap distance between the interacting particles [37,38]. Here, µ

is the friction coefficient of the particles. Although the implementation is already generalized for frictional particles, below
we will only refer to non-frictional cases.

The Newton’s equation of motion for rods particles i is given by,

Nc
j=1

F⃗ij = m ¨⃗ri (5)
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Fig. 1. In (a) Sketch of the interaction among two particles is shown; In (b) Partial snapshot of a system of 32768 spherocylinders with elongation of ξ = 3.
Volume fraction of ηr = 0.045.

for the translation degrees of freedom. The Euler ’s equations describe the rotational motion,

Nc
j=1

τ x
ij = Mx

i = Ixx ω̇x
i − (Iyy − Izz) ω

y
i ωz

i

Nc
j=1

τ
y
ij = My

i = Iyy ω̇
y
i − (Izz − Ixx) ωz

i ωx
i

Nc
j=1

τ z
ij = Mz

i = Izz ω̇z
i − (Ixx − Iyy) ωx

i ω
y
i .

(6)

In these expressions, m represents the mass of the particle and Ixx, Iyy, Izz are the eigen-values of the moment of inertia
tensor Iij. Fij is the force exerted by particle j on particle i and τij accounts for its corresponding torque τij. The total force
Fi, and momentum Mi acting on particle i are obtained as sums of the pair-wise interaction of particle i with its contacting
neighbors.

We developed CUDA-thrust function integrators, for both the translation and the rotational degree of freedom. To
integrate the 3D translational equations of motion a Verlet-velocity numerical algorithm was implemented. The CUDA-
thrust functions/methods are called by the host(CPU), inside the Molecular Dynamic loop. Hence, all particles positions and
velocities are calculated in parallel.

The numerical implementation of the rotational degree of freedomdeserves amore detailed description. The set of Eq. (6)
describes the evolution of the particles angular velocityω, in the body frame. Additional equations are necessary to describe
the evolution of the particle orientation. Here, we adopted the quaternion representation, which has several demonstrated
technical advantages over other methods [39]. The unit quaternion q = (q0, q1, q2, q3) = q0 + q1i+ q2j+ q3k characterizes
the particle orientation [40,41] where

3
i=0 q

2
i = 1. Each quaternion variable satisfies the rotational equation of motion

[40,41]

q̇ =
1
2
Q (q)ω (7)

where

q̇ =

q̇0
q̇1
q̇2
q̇3

 , Q (q) =

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 , ω =

0
ωx
ωy
ωz

 .

Eqs. (6) and (7) are solved using a Fincham’s leap-frog algorithm [42]. The approach obtains q(t+dt) from q(t)using equation

q(t + dt) = q(t) + dt q̇(t) +
dt2

2
q̈(t) + O(dt3) = q(t) + dt q̇


t +

dt
2


+ O(dt3). (8)

Hence, quaternion derivative at mid-step q̇(t + dt/2) is required. Eqs. (7) indicates that q(t + dt/2) and ω(t + dt/2) are
required, the former can be easily calculated using

q

t +

dt
2


= q(t) + q̇(t)

dt
2

(9)
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where q̇(t) is again obtained from (7), prior to which ω(t) can be calculated using

ωx(t) = ωx
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dt
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To avoid build-up errors, the quaternions q(t) are renormalized every time step [43]. The angular integrators have also
been implemented as CUDA-thrust functions. As we pointed out earlier, those kernels run on the GPU device allowing
the evaluation of the spatial and angular positions of a block of particles, with a double precision accuracy in a single
computational time step.

The parameters of the contact model are chosen as follows: to model hard particles the maximum overlap must al-
ways be much smaller than the particle size. This has been ensured by introducing values for normal elastic constant,
kn = 2.8 × 106 N/m and density ρ = 2600 kg/m3. To compare the numerical simulations with existing analytical predic-
tions of kinetic theory, systems of rods with contact parameters equivalent to restitution coefficients en = 0.88, 0.90, 0.96
were studied. Thus, the normal dissipation parameter γn was calculated using the normal coefficient of restitution en by the
equation γn =


(4knm12)/((

π
ln 1/en

)2 + 1) and for frictionless rods we have set γt = 0 and kt = 0. The collision time can be

estimated tc = π
√
m12/kn and, accordingly, a time step 1t = tc/50 have been used.

It is important to indicate that the assumption of a constant restitution en is not totally valid when using DEMs of non-
spherical particles, due the energy losing depends on the collision details. In the discussion of the results, we introduce a
way to overcome this situation when comparing the numerical data with its corresponding analytical prediction.

4. Simulation results

We have numerically studied the free cooling kinetics of a dilute granular gas of rods. In all simulations reported here,
a fixed number of particles N = 215

= 32 768 confined in a square box of size L = 2 meters are used. Simulations are
computed using rods of different aspect ratios, from ξ = 1.0 to ξ = 4.0, with ξ = (l + 2r)/2r but always keeping the
packing fraction equal to ηr = 0.045, particle volume Vp = ηrL3/N and masm = ρVp. In each case, the values of r and l are
adjusted to the choice of ηr and ξ . Initially, the particles are homogeneously distributed in space and their translational and
rotational velocities followed auniformGaussian distribution in eachdirection.Moreover,with the aimof avoiding the initial
configuration effects, dissipation is initially disabled, and a number of time steps without energy dissipation are performed.
Afterwards, the energy loss is enabled and themain loop of the program is executed. To avoidwall effects periodic boundary
conditionswere implemented. The simulations run until the totalmean translational and rotational kinetic energies decayed
several orders of magnitude. In Fig. 1(b) we display a snapshot of the simulated system with ξ = 2.

The dynamics of freely evolving gases of rods were examined by monitoring the temporal evolution of the mean
translational Ttr(t) and rotational Trot(t) kinetic energies, which are usually referred as granular temperatures. In Fig. 2(a),
the evolution of the translational kinetic energy Ttr(t) in time is presented. In similarity to spherical particles, a gas of rods
cools down uniformly. As it was expected due to the low dissipation, in all cases the system seems to evolve to a HCS where
the granular temperature asymptotically decreases following Haff’s law t−2. However, the cooling dynamics are notably
accelerated for elongated particles. In Fig. 2(b), the asymptotic ratio of Ttr/Trot is examined varying the elongation and the
coefficient of normal restitution. Note that one observes two regions, in the case of short rods ξ < 1.5 the translational
degree of freedom cools down faster than the rotational one Ttr/Trot < 1. For longer rods, however, energy equipartition
is better satisfied, Ttr/Trot ≈ 1, especially as one gets closer to the elastic limit en = 1. This indicates that for short rods,
the energy interchange between degrees of freedom is notably altered and conditions of total energy equipartition are not
satisfied. One could argue that below values of ξc ≈ 1.5 a single collision of two particles may favor the translational
to rotational energy transfer. Note that where the contact point is close to the center of mass of one of the particles, its
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Fig. 2. In (a) the evolution of the kinetic energy of several systems of rods with en = 0.88. For comparison, it is shown the theoretical result corresponding
to the numerical solution in real time of Eq. (1) with similar volume fraction and tangential restitution coefficient et = 1; in (b) the ratios between the
translational and rotational kinetic energy Ttr/Trot , at very long times are also shown.

Fig. 3. The collapse of the curves Ttr/Ttr (0) vs. Grdt = Dc(ξ)Gspht for each en is illustrated. The analytical values of Gsph have been calculated using Eq. (2),
for equivalent spheres with the same volume Vp .

translational energy diminishes, while its rotational degree of freedom is less affected. When particles are shorter, central
collisions are more and more frequent, which may unbalance the energy interchange process. This behavior has also been
observed in granular gases of monodisperse ellipsoids [27]. It is important to remark that for ξ = 1.0 is singular due to
the abrupt absence of torques and rotational degrees of freedom. Note that for frictionless spheres the rotational degrees of
freedom are completely decoupled from the dynamical evolution of the gas. Moreover, the energy equipartition is also lost
when the dissipation is enhanced, we could argue that the numerical performance of the algorithm might be conditioned
by the hardness of the used particle.

In Fig. 3 the time evolution of the kinetic translational energy is compared to the mean field analytical results, which
are available for a gas of spheres with similar macroscopic properties [31]. The time scale has been rescaled with its
corresponding geometrical factor, resulting a collision frequency, Grd = Dc(ξ)Gsp. Note that the only free parameter is
Dc(ξ), which has been used as fitting parameter comparing our simulations to the analytical prediction of Eq. (1) for the
same volume fraction ηr = 0.045, particle mass and frictionless particles et = 1. It is remarkable that all curves with
different aspect ratios collapse into the analytical prediction. This proves the existence of a HCS, where the total energy
of the system homogeneously decreases and the time evolution of all variables can be described only through its global
granular temperature.

Then we can go one step forward to test whether the nature of the system kinetics is independent of the dissipation
parameters. In Fig. 4,we illustrate howHaff’s LawEq. (4) in a time scale τ(ξ) applies to the homogeneous cooling state of rods
in awide regime of elongations. The solid line corresponds to the theoretical approximation of Ttot(τ ); the chosen time scale
τ(ξ) is explained in the next paragraph. The scaling of the curves and the remarkable agreement with the analytical formula
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Fig. 4. Evolution of the total temperature Ttot (τ )/Ttot (0) vs. the characteristic time τ , note the scaling of all the curves when using the characteristic time
τ(ξ) = α∗Dc(ξ)Gspt , numerical data corresponding to several particles elongations d > 1.5 and restitution coefficients (en = 0.88; 0.90; 0.96) have been
included. Similarly to the case of ellipsoids [28] and effective dissipation factor α∗

=
√
3/2α have been used [29]. The inset represents the evolution in

time of the quality factor ∆ =
Ttot−Tth

Tth
.

Fig. 5. Numerical estimation of αDc(ξ) (a) and the corresponding Dc(ξ) (b) as a function of the elongation, obtained collapsing each numerical data for
the translational kinetic energy and its corresponding analytic prediction. For comparison in (b) the dashed line corresponds to the theoretical result for
homogeneous ellipsoids given in Ref. [27].

indicate the presence of a homogeneous cooling process, in similarity to spheres with constant restitution coefficient. In the
inset of Fig. 4, the values of the scaling quality factor ∆(τ ) =

Ttot−Tth
Tth

, where Tth(τ ) =
1

(1+τ)2
are shown. The outcomes

indicate that the error is practically smaller than the 10% in all cases. However, the scaling resulted in lower accuracy
for longer times and highly dissipative systems due to the imminent development of clustering and a non-homogeneous
cooling dynamics. The consistency of our results validate the performance of the hybrid numerical algorithm running on
GPU architecture.

It is important to mention that the cooling dynamics predicted by Eq. (4) is based on the assumption that the restitution
coefficient is constant, regardless the details of the collision event. This presumption is natural when performing event-
driven simulations and DEM of hard spherical particles. Assuming a constant restitution coefficient is not totally valid when
using DEMs of non-spherical particles, because the energy losing generally depends on the type of collision. Nevertheless,
in very dilute systems it is plausible to consider only binary collision and the energy lost can be entirely described by an ef-
fective dissipation. In Ref. [28], the cooling dynamics of frictionless ellipsoids using DEMwas explored and the results were
also compared to Haff’s law Eq. (4) in a time scale τ(ξ) = α∗Gellip(ξ)t where Gellip(ξ) was analytically deduced [27]. Note
that full agreement with the analytic formula Eq. (4) was only found identifying α∗ with an effective dissipation coefficient
α∗

=
√
3/2 α. Having said that, here we also used a characteristic time τ = α∗Grd(ξ)t and take advantage of the homoge-

neous properties of the HCS of rods to numerically find the functionality of Grd(ξ) in terms of Gsph, τ = α∗Dc(ξ)Gspht .
Fig. 5(a)–(b) shows the values of αDc(ξ) and Dc(ξ) obtained from the direct scaling with Haffs law. The procedure

allows us to numerically determine the functionality ofDc(ξ), which quantifies the efficiency of the energy transfer between
rotational and translation degrees of freedom, as well as its particle size dependence. For comparison, we also included in
Fig. 5(b) data corresponding to the analytic outcomes obtained for frictionless monodisperse ellipsoids [27]. It is important
to remark that even though using rods and ellipsoids with the same volume, still both geometrical shapes have different
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Fig. 6. In (a) velocity distributions and in (b) angular velocity distributions obtained for a systems of frictionless rods. Results for ξn = 0.88 at t = 40, 200,
400 s. The dashed lines correspond to a Gaussian fits.

average surface area Sc(ξ). Consequently, one would have to compare the magnitude Dc(ξ)Sc(ξ). For sake of simplicity,
the analytic valuesDc(ξ)Scellip(ξ) of Ref. [27] have been rescaled with Scsph, the average surface of its corresponding sphere
with the same volume. Thus, the comparison is done with Dc(ξ)Scellip(ξ)/Scsph and, as it can be expected, the results for
rods are very close to the outcomes for ellipsoids with similar elongations. In spite of that, there is a region where the rods
and ellipsoids behaved slightly different. It is noticeable that for (1.5 < ξ < 4.0) the average energy transfer per unit of area
between the rotational and translational degrees of freedom resulted slightly greater for rods than ellipsoids with similar
elongation.

During the cooling process both, linear and angular, velocity statistics are also examined. The simulation begins from
a uniform velocity distribution for both, the translational and angular degrees of freedom. Before starting to analyze the
system temporal evolution, the system is allowed to execute several hundreds of collisions without dissipation. Note that
due the low dissipation, particles cool down uniformly over a wide range of time. Thus, all the temporal dependences
are calculated through the mean values of the translational and rotational temperature. The velocity distributions at
different snapshot of the simulation are shown in Fig. 6(a). In all cases, the velocity distributions is close to a Gaussian
distribution P(vi) =

1
σv

√
2π

e−v2i /2σ 2
v . For the rotational degree of freedom, in Fig. 6(b) we plot the angular velocity

distribution for each angular component obtained at different times. The data proves that cooling process at the rotational
level also occurs homogeneously. Thus, the two components of the angular velocity behave equivalently and with the
same characteristic values. In all cases the distribution follows a Gaussian behavior P(wi) =

1
σw

√
2π

e−w2
i /2σ 2

w featuring
the expected homogeneous cooling process, regardless of the particle anisotropy. Nevertheless, the limitation of our
system size N prevents us from analyzing the tails of the distributions, where deviations from the Gaussian behavior may
appear [44].

Conclusions and outlook: We have introduced a hybrid CPUGPU implementation of an accurate molecular dynamics
algorithm of a system of 3D spherocylinders. We further have numerically described a homogeneous cooling state of a
granular gas consisting of 3D spherocylindrical particles. In that state, the evolution of the systems, intensive variables
occurs only through a global granular temperature that sets the relevant time-scale. We examined the uniform cooling
kinetics and introduced a rescaled time τ(ξ), which depends on the particle elongation. Excellent agreementwith Haff’s law
and energy equipartition are observed for elongated particles with ξ > 1.5. The agreement is enhanced when approaching
the elastic limit. Taking advantage of scaling properties, we have numerically determined the general functionality of the
quantity Dc(ξ), which describes the efficiency of the energy interchange between rotational and translational degrees of
freedom, as well as its dependence with the particle shape.When the cooling process is explored at very large time scales or
when examining higher dissipative systems, we observe deviations fromHaffs law Eq. (4). In those cases, the system evolves
into an inhomogeneous state where the cooling dynamics notably slows down. Moreover, strong inhomogeneities in the
velocity field and clustering are present. In this regime the collective motions of particles determine the process dynamics
and is very difficult to describe analytically. Finally, we have also implemented rough generalized rods and particle friction
was found to have a significant influence on system cooling kinetics. In that case, the azimuthal and polar rotational degrees
independently evolve and only correlate with the translational degrees of freedom at very long time. These issues will be
investigated in future works.
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