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In this work, we examine theoretically the cooling dynamics of binary mixtures of
spheres and rods. To this end, we introduce a generalized mean field analytical theory,
which describes the free cooling behavior of the mixture. The relevant characteristic
time scale for the cooling process is derived, depending on the mixture composition
and the aspect ratio of the rods. We simulate mixtures of spherocylinders and spheres
using a molecular dynamics algorithm implemented on graphics processing unit
(GPU) architecture. We systematically study mixtures composed of spheres and rods
with several aspect ratios and varying the mixture composition. A homogeneous
cooling state, where the time dependence of the system’s intensive variables occurs
only through a global granular temperature, is identified. We find cooling dynamics
in excellent agreement with Haff’s law, when using an adequate time scale. Using the
scaling properties of the homogeneous cooling dynamics, we estimated numerically
the efficiency of the energy interchange between rotational and translational degrees
of freedom for collisions between spheres and rods. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954670]

I. INTRODUCTION

Granular gases are ensembles of macroscopic particles that lose energy due to their non-elastic
collisions. Thus, the continuous energy dissipation keeps them mainly out of thermal equilibrium,
and only when an external energy source is involved, a steady state can be reached.1,2 Over the
last decades, granular gases have been thoroughly examined analytically,1,2 experimentally,3–8 and
numerically.1,2 Hence, it has been proven that a freely evolving, weak dissipative gas cools down
homogeneously, reaching the so-called homogeneous cooling state (HCS).9,10 In those conditions,
the particles are uniformly distributed in space and the cooling dynamics is governed by the gran-
ular temperature, which is proportional to the average kinetic energy.

Kinetic analytical theories and hydrodynamic approaches have been developed to describe
the macroscopic properties of granular gases.1,2 Hence, it is well accepted that both the cooling
dynamics and the process characteristic time are determined by the inelasticity of the particles and
the frequency of collision.11,12 For instance, when considering the most simple case, an ensemble of
spherical particles with constant restitution coefficient, the granular temperature diminishes follow-
ing Haff’s law resulting in an asymptotic decay T(t) ∼ t−2.13 Meanwhile, when particle interaction
is characterized by a velocity dependent restitution coefficient, a generalized cooling law can be
deduced.1,2 For the particular case of a Hertz-contact, the asymptotic algebraic decay of the granular
temperature reduces to T(t) ∼ t−5/3.14

Nevertheless, it is very well know that at large time scales, the HCS becomes unstable and
the system subsequently evolves into an inhomogeneous state, while the cooling process notably
slows down.15–18 In this regime, the particles’ collective motion determines the system behavior, and
large density inhomogeneities are typically observed.15–18 Hence, clusters of particles appear, grow,
and interact due to dissipative collisions.18 Moreover, it is also know that particle friction plays
a crucial role in the cooling dynamics of granular gases. Particle roughness induces a non-trivial
energy interchange, which leads to a complicated energy sharing among degrees of freedom.19–22 In
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general, the time evolution of the rotational and translational kinetics energies is coupled; however,
no full equipartition between degrees of freedom is commonly found.19–22

The effect of particle shape on the kinetic evolution of granular gases has been explored a long
time ago.23,24 Zippelius and coworkers developed a kinetic theory of hard needles based on the
assumption of a HCS. Thus, it was found that the energy interchange between degrees of freedom
is controlled by the macroscopic restitution coefficient and by the distribution of mass along the
needles.23 More recently, there is an increasing interest in the cooling dynamics of non-spherical
grains both experimentally6–8 and numerically.25–28 Here, the primary interest is also focused on the
time evolution of the translational and rotational kinetic energies. Normally, in granular gases of
elongated particles, equipartition does not apply. Moreover, it has been found that several details of
the cooling process depend on particle aspect ratio, mass distribution of the grains, and the driving
mechanisms.25–28

In addition to their deviation from perfect spherical shape, realistic granular materials are poly-
disperse. This feature is the source of interesting, and often counter-intuitive effects,29–31 regarding,
e.g., their mixing/segregation properties, of which the Brazil nut effect32 constitutes perhaps the
most famous illustration. In the realm of granular gases, a number of hydrodynamic descriptions
have been derived for inelastic binary mixtures33–35 based on the analysis of the appropriate Boltz-
mann equations. In the simpler case of a homogeneous binary mixture, studies have shown the
existence of a homogeneous cooling state,34–38 and the analysis of the cooling properties of those
systems has revealed, in particular, the potential breakdown of the energy equipartition between
species, similar to what can be observed in systems possessing internal degrees of freedom. All of
those studies deal however (in 3 dimensions) with spherical particles, whether smooth (in the vast
majority of the works) or rough22 case.

The purpose of the present work is to investigate the cooling properties of systems combining
both non-spherical shape and polydispersity, by considering a homogeneous mixture of spheres and
rods. The paper is organized as follows: in Sec. II we introduce some basic concepts about the
kinetics of a dilute granular mixture composed of rods and spheres, in Sec. III we briefly describe
the numerical model and implementation of our algorithm, and Sec. III discusses the numerical
results of the homogeneous cooling of our system. At the end, conclusions and outlook are drawn.

II. HOMOGENEOUS COOLING STATE, MIXTURE OF SPHERES AND RODS

Consider a binary mixture of smooth spheres and rods of mass m, having number densities
nS and nR, respectively (see sketch in Fig. 1). The smoothness of the particles render irrelevant
rotational degrees of freedom of the spheres, as well as the rotation of the rods around their axis, so
that the angular momentum of rods is characterized by a single (for symmetry reasons) moment of
inertia I, corresponding to the rotation around a direction perpendicular to the axis. From a kinetic
point of view, the mixture is described by a set of two distribution functions, fR (v,ω, γ) and fS (v),
corresponding to the rods and the spheres, respectively, where u denotes the velocity of the (center
of mass of the) particles, ω the angular velocity of the rods, and γ denotes the angular orientation of
the rod axis. From the hydrodynamic point of view, in addition to the number density, the system is
described by three granular temperatures, describing (internal) translational and rotational average
energies, given in terms of the distribution functions (in the absence of convection) by

TS ≡
1
ns


fS (u)mu2dv,

for the translational kinetic energy of the spheres,

TR =
1
nR


fR (u,ω, γ)mu2dvdωdγ,

for the translational kinetic energy of the rods, and

θR =
1
nR


fR (u,ω, γ) Iω2dudωdγ,
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FIG. 1. Dilute mixtures of spheres and spherocylinders with aspect ratio of ξ = 3. We illustrate a system with N = 512 and
β = 0.5.

for the rotational kinetic energy of the rods. The overall mixture temperature of the mixture is
defined as

T = (1 − β)TS + βTR + βθR, (1)

where β ≡ nR
n

, and n ≡ nS + nR. Notice that the temperatures are not defined per degree of freedom,
but as (twice) the energy per particle. We consider the behavior of a mixture in the Homogeneous
Cooling State (HCS),13,39 whose dynamics is driven by its energy, described by the equation for T ,

n
∂T
∂t
= −Γ, (2)

where Γ is the cooling rate, describing the decay of energy due to the inelastic nature of the colli-
sions, and comprises three contribution corresponding to sphere-sphere, sphere-rod, and rod-rod
collisions,

Γ =


fS (u1) fS (u2) |u12|∆ESSdsSSdu1du2 + 2


fS (u1) fR (u2,ω2, γ) |u12|∆ERSdsRSdu1du2ω2dγ

+


fR (u1,ω1, γ1) fR (u2,ω2, γ2) |u12|∆ERRdsRRdu1du2dω1dω2dγ1dγ2, (3)

where dsSS, dsRS, and dsRR are the differential cross sections corresponding to sphere-sphere,
sphere-rod, and rod-rod collisions, respectively, u12 ≡ u1 − u2 is the relative velocity of the centers
of mass of the colliding particles, and ∆ESS, ∆ERS,∆ERR are the energy losses in the three types of
collisions. For constant coefficients of restitution (see more below), in the case of hard spheres (or
disks), solving Eq. (3) results in Haff’s law13 describing the dynamics of the temperature field,

T (t) = T (0)(
1 + Γ(0)

2T (0) t
)2 . (4)

The cooling coefficient Γ has been recently evaluated for a monodisperse system of ellipsoids, by
employing the (elastic) equilibrium expression for the collision frequency, and extrapolating the
formula derived for disk and spheres to five dimensions,25 to account for the additional rotational
degrees of freedom. Note that full energy equipartition is, however, a property of equilibrium, a
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state that cannot be reached by a granular gas, because of the dissipative nature of the interactions
between the grains. For instance, equipartition is known to break down in the case of, e.g., inelastic
rough disks and spheres,40,41 mixtures of granular gases,33,34,36 or hard needles.23 We therefore
proceed here to extend the evaluation of the cooling coefficient to the case of binary mixtures of
rods and spheres, relaxing the assumption of equipartition.

A. Dynamics of collisions

Consider the collision of two rigid biaxial bodies, labeled “1” and “2.” The velocities of the
particles at the point of contact are given by

c1 = u1 + ω1 × r1,

c2 = u2 + ω2 × r2,

where r1 and r2 are the vectors joining the centers of the particles to the contact point. Define n as
the unit vector normal to the surface (pointing from 1 to 2) at contact. The coefficient of normal
restitution α is defined by

c′12 · n = −αc12 · n, (5)

where c12 ≡ c1 − c2 is the relative velocity at contact, and primes denote post-collisional quantities.
The post-collisional angular momenta around the centers of mass are

J′1 = J1 + r1 × ∆p12,

J′2 = J2 − r2 × ∆p12,

where ∆p12 is the change of momentum of particle “1” in collision, and J1 and J2 are the pre-
collisional angular momenta of the colliding bodies. For symmetry reasons, since the absence of
friction makes the rotation around the axis of the bodies irrelevant, the angular momenta can be
taken proportional to the angular velocities: J1 = I1ω1; J2 = I2ω2, with I1 and I2 the moment of
inertia of the particles around a direction perpendicular to their axis. Therefore,

ω′1 = ω1 +
r1 × ∆p12

I1
,

ω′2 = ω2 −
r2 × ∆p12

I2
.

Using the fact that ∆p12 = ∆p12n (no tangential force), together with Eq. (5), one obtains

∆p12 = −
(1 + α)

2
c12 · n

1
m
+ 1

2

(
(r1×n)2

I1
+

(r2×n)2
I2

) .
Using the above expression for ∆p12 one can readily obtain the following expression for the change
of kinetic energy in collision:

∆E12 = −
�
1 − α2�

4
µ (r1,r2,n) (c12 · n)2, (6)

where

1
µ
≡ 1

m

(
1 +

m
2

( (r1 × n)2
I1

+
(r2 × n)2

I2

))
.

The energy losses in the three types of collision are thus given by

∆ERR = −
�
1 − α2�

4
m(c12 · n)2

1 + m
2I

((r1 × n)2 + (r2 × n)2) , (7)

for rod-rod collisions,

∆ERS = −
�
1 − α2�

4
m (u12 · n + (ω1 × r1) · n)(

1 + m
2I (r1 × n)2) , (8)
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for rod-spheres collisions, where index “1” pertains to the rod, and

∆ERR = −
1 − α2

4
m(u12 · n)2,

for sphere-sphere collisions.

B. Cooling coefficient

In order to evaluate Γ (cf. Eq. (3)), one needs expressions for the distribution functions f1

and f2, which requires solving the relevant set of coupled Boltzmann equations. For the sake of
simplicity, we consider here normal distributions (i.e., which depend on time only through the
temperature) and approximate f1 and f2 by Maxwellian distributions. As mentioned, equipartition
cannot a priori be assumed, and we therefore consider the following ansatz for the distribution
functions, where the (two) translational velocities and rotational velocities are scaled with different
temperatures,

f1 (u1,ω1, γ1) = n1

Ω

(
3m

2πTR1

) 3
2
(

I1

πθ1

)
e
−*
,

3mu2
1

2TR1
+

I1ω
2
1

θ1
+
-, (9)

f2 (u2,ω2, γ2) = n2

Ω

(
3m

2πTR2

) 3
2
(

I2

πθ2

)
e
−*
,

3mu2
2

2TR2
+

I2ω
2
2

θ2
+
-, (10)

where Ω =


dγ = 4π. Notice that assuming a normal solution implies that, while the temperatures
TR1, TR2, θ1, and θ2 are different from each other, their dynamics remain enslaved to that of T , and
all temperature ratios are constant in time. For the homogeneous cooling state of a binary mixture of
inelastic spheres, similar assumptions have been shown to yield accurate results.34,36 With the above
assumptions, the cooling coefficient Γ is given by (see Appendix for details),

Γ = (1 − α2)nT3/2

√
m
Γ̃, (11)

where

Γ̃ = −
√

3
9
√
π


β2

(
TR

T

) 3
2
 (

1 + 3m
4I

(
θ
TR
(r1 × n)2 + θ

TR
(r2 × n)2)) 3

2

1 + m
2I

((r1 × n)2 + (r2 × n)2)


RR

+ 2β (1 − β)
(
TR + TS

2T

) 3
2
 (

1 + 3m
2I

θ
TR+TS

(r1 × n)2) 3
2

1 + m
2I (r1 × n)2


RS

+ (1 − β)2
(
TS

T

) 3
2 ⟨1⟩SS


. (12)

The brackets in Eq. (12) are defined as

⟨Φ⟩RR =
1
Ω2


RR
ΦSRR (n, γ1, γ2) dndγ1dγ2,

⟨Φ⟩RS =
1
Ω2


RS
ΦSRS (n, γ1, γ2) dndγ1dγ2,

⟨Φ⟩SS =
1
Ω2


SS
ΦSSS (n, γ1, γ2) dndγ1dγ2,

where SRR (n, γ1, γ2), SRS (n, γ1, γ2), SSS (n, γ1, γ2), and the integration domains of n correspond to
excluded volume, according to the type of collisions and depending on the orientation of the parti-
cles. In particular, for a collision between hard spheres, ⟨1⟩SS =


σ2dn = 4πσ2. As mentioned, in a

normal state, all temperature ratios are constant in time, so that the dependence of Γ (cf. Eq. (11)) on
T (Γ ∝ T3/2) yields Haff’s law, cf. Eq. (4).
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We can proceed to evaluate Eq. (12) in the limiting case of energy equipartition between
species and degrees of freedom,

TR = TS =
3
2
θ, (13)

T =
(
(1 − β) + 5

3
β

)
TR, (14)

and the cooling coefficient, Eq. (12), reduces to

Γ̃o =
β2DRR + 2β (1 − β)DRS + (1 − β)24πσ2

√
π(2β + 3)3/2

, (15)

where

DRR ≡


1 +
m
2I

((r1 × n)2 + (r2 × n)2)
RR

describes the efficiency of the energy interchange between rotational and translational degrees of
freedom in rod-rod collisions, while

DRS ≡


1 +
m
2I

(r1 × n)2


RS
,

accounts for the energy interchange in collisions between rods and spheres. Setting β = 1 in
Eq. (15), the analytical results corresponding to a mono-disperse gas of ellipsoids25,26 and rods,45

which were derived assuming (implicitly) equipartition, are recovered. Notice that, in contrast to the
present analysis, the evaluation of Γ̃o for a monodisperse system of frictionless ellipsoids in Ref. 25
was based on an extrapolation of the formula pertaining to frictionless spheres to five dimensions,
corresponding to two rotational and three translational degrees of freedom.

III. NUMERICAL MODEL

In this work, we improve a hybrid GPU-CPU discrete element algorithm for simulating three-
dimensional spherical46 and non-spherical26,45 particles that were recently introduced. Here we
examine mixtures of particles made of the same material but with different shapes, specifically,
spheres and rods. In the model, the rods are described as spherocylinders, which are characterized
by their length l, sphero-radius r , the volume Vp = πr2l + 4

3πr3, and the aspect ratio ξ = l+2r
2r . For

the sake of simplicity, we consider a mixture with spherical particles with the same volume V p.

Accordingly, the radius of the spherical particles is σ =
(
V p

4/3π

) 1
3 . The system composition is charac-

terized by the weighting parameter β, which is defined as the ratio of the total number of rods Nrd

to the total number of particles in the mixture NT , β = Nrd
NT

. Accordingly, the number of spherical
particles in the system is Ns = (1 − β)NT .

To calculate the particle-particle interaction, we use an efficient algorithm for interacting
spheropolyedra,47,48 implemented on GPU architecture,45 which allows to describe systems with
large number of particles in 3D. The only new ingredient is taking into account the type of inter-
acting particles (sphere-sphere, sphere-rod, and rod-rod), to properly define the plane of contact and
the overlap distance. In the new algorithm, the particles are labeled. The three possible types of
contact are illustrated on the sketch of Fig. 2. Note that both the magnitude of the force and the
direction of the contact plane depend only on the local inter-penetration between the two contacting
spheres.47,49 Moreover, as the particles are considered friction-less, the contact force always acts
normal to the plane of contact n̂. The contact force has an elastic and a dissipative contribution,
Fi j = −knδ n̂ − γnvnreln̂, where δ accounts for the overlap distance, kN is the spring constant, γn is
the damping coefficient, and vnrel represents the normal relative velocity between the particles.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  159.237.12.32

On: Mon, 04 Jul 2016 07:55:04



073301-7 Hidalgo, Serero, and Pöschel Phys. Fluids 28, 073301 (2016)

FIG. 2. Sketch of the three types of collision within the system. Note that particle volume and mass is kept the same for both
types of particle.

We have numerically solved the Newton’s equation of motion of each particles i (i = 1, . . . ,N)
of the mixture,

Nc
j=1

Fi j = mr̈i, (16)

for the translation degrees of freedom. Moreover, particularly for the rods particles, the Euler’s
equations that describe their rotational motion,

Nc
j=1

τxi j = M x
i = Ixx ω̇x

i − (Iy y − Izz) ωy
i ω

z
i ,

Nc
j=1

τ
y
i j = M y

i = Iy y ω̇
y
i − (Izz − Ixx) ωz

i ω
x
i ,

Nc
j=1

τzi j = M z
i = Izz ω̇z

i − (Ixx − Iy y) ωx
i ω

y
i ,

(17)

are also numerically solved. In these expressions, m represents the particles’ mass, which is the
same for both types. Ixx, Iy y, Izz are the eigen-values of the moment of inertia tensor Ii j of a
spherocylinder. Note that Fi j is the force exerted by particle j on particle i and τi j is the correspond-
ing torque. The total force Fi, and momentum Mi acting on particle i are obtained as sums of the
pair-wise interaction of particle i with its Nc contacting neighbors.

The numerical implementation of the rotational degree of freedom deserves a better descrip-
tion. It is noticeable that the set of Eqs. (17) is the first step to calculate the evolution of the particles
angular velocity ω, in the body frame. However, a second step is necessary to solve for the particle
orientation, which is necessary to model non-spherical particles. Furthermore, the rotational part of
the motion equations is represented by using a quaternion representation, due to its several demon-
strated technical advantages. So that, the unit quaternion q = (q0,q1,q2,q3) = q0 + q1i + q2 j + q3k

characterizes the particle orientation50,51 where
3

i=0
q2
i = 1. CUDA thrust device functions have been

implemented to integrate the 3D equation of motions. Details of this implementation can be found
in Refs. 26 and 45.

To model hard particles, the maximum overlap must always be much smaller than the particle
size. This has been ensured by introducing values for normal elastic constant, kn = 2.8 × 106 N/m.
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Moreover, we used equivalent normal dissipation parameter γn =

(4knm12)/(( π

ln 1/α )2 + 1) s−1,
that corresponds with specific value of the normal α. For the case of linear-spot model, the colli-
sion time can be estimated, tc = π

√
m12/kn, accordingly a time ∆t = tc/50 has been used. It is

important to clarify that presupposing a constant restitution coefficient is not always valid when
using DEMs of non-spherical particles, due to the dependence of the energy loss on the type of
collision. However, to compare the numerical simulations with existing analytical predictions of ki-
netic theory, systems of rods with contact parameters equivalent to restitution coefficients α = 0.90
and 0.95 were studied. Moreover, to check the effect of the composition we explore systems
with [β = 0.0; 0.25; 0.5; 0.75; 1.0]. Simulations are computed using rods of different aspect ratios,
ξ = [1.25 − 4], keeping the packing fraction equal to ηr = 0.007. Although no data are included in
this report, similar results are found with ηr = 0.045.

IV. RESULTS AND DISCUSSION

The cooling dynamics of mixtures composed of frictionless rods and spheres was numeri-
cally explored. As pointed out above, our system consisted of NR = βN rods and NS = (1 − β)NR

spheres, which were randomly placed in the space domain, at the beginning of the process. We
explored systems with system size N = [512; 4096; 32 768] grains. Moreover, random angular and
translational velocities were initially assigned to the particles. We performed preliminary studies
exploring the system behavior using different initial conditions for the particle velocity distri-
butions. Then, we selected characteristic values of the initial velocity distributions, so that the
mechanical energy per particle in each degree of freedom was the name. This state corresponds to
TR(0) = θ(0) = βN and TS = (1 − β)N . Note that these values do not necessarily equal the expected
at the long term limit. Thus, it allowed us to clarify the system evolution to a normal state, in which
all temperature ratios are constant in time.

The energy decay of freely evolving mixtures is studied, monitoring the marginal translational
TR(t) and TS(t) and rotational θ(t) kinetic energies per particle. First, the relative decrease of the
translational kinetic energies of both species (TR(t) and TS(t)) is examined. Fig. 3 illustrates the
behavior of the ratio between the two translational temperatures TR

TS
(t). The generality of our find-

ings is clarified, investigating systems of spheres and rods with different aspect ratios. Additionally,
several mixture compositions are explored. From the results of Fig. 3, it is evident that the systems
start from a state where the relative amount of energy accumulated by each component is not in
steady conditions. However, multiple collisions lead to an efficient energy interchange between
species. Hence, while the system total energy diminishes, the remaining energy is redistributed
among the two species. As it can be appreciated, the energy sharing occurs in such a way that
the value of TR

TS
(t) converges to a plateau, indicating a trend consistent with a normal solution. In

addition, it denotes the strong correlation of the cooling of both species TR
TS

(∞) = 1. These results
show that after reaching the plateau the system translation energy cools down uniformly, while the
marginal translational kinetic energies, TR(t) and TS(t), diminish with the same rate. Indeed, after
a transient, TR(t) and TS(t) are very similar, which suggests the existence of a regime where the
gas remains very well mixed denoting “thermal equilibrium” between species. Thus, for the time
regimes considered here, the cooling dynamics is totally controlled by energy dissipation during
single collisions between particles. The species interact between them sharing energy and, as a
result, the translational energy per particle of each component becomes equalized and continues to
decrease with the same rate.

As second step, we examine the way the energy is stored and shared within the rods’ internal
degrees of freedom. In Fig. 4, the evolution of the ratio between the rotational θ(t) and translational
TR(t) kinetic energies of the rods is shown. It is noticeable that again there are two different cooling
regimes. Initially, one observes a transient regime where the θ

TR
(∞) is not constant. However, while

the rods’ total energy decreases, it is quickly redistributed among TR(t) and θ(t). This process
leads to a constant value of θ

TR
(∞), which is in better agreement with full energy equipartition

θ
TR

(∞) = 2
3 , when the aspect ratio of the rods is large.
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FIG. 3. Evolution of the ratio between the granular temperatures of the two components TR/TS vs time. Outcomes obtained
for different compositions are illustrated [(a) β = 0.25, (b) β = 0.5 and (c) β = 0.75].

Nevertheless, in systems composed of spheres and short rods ξ < 1.5, deviations from full
energy equipartition are more noticeable, regardless of mixture composition. In these cases, the
rods do not equally share their energy among degrees of freedom and, consequently, the asymp-
totic value θ

TR
(∞) depends slightly on both aspect ratio and mixture composition θ

TR
(∞) = f (ξ, β).

These outcomes suggest that energy interchange between the rotational and translational degrees of
freedom is notably affected for particles with ξ < 1.5. In fact, θ(t) stores more energy than TR(t), as
shown by the fact that θ

TR
(∞) > 2

3 . While these observations are non-trivial, it can be expected that
below a threshold value of the elongation ξc, a single collision of two rods might favor the transla-
tional to rotational energy transfer. Indeed, in a collision of two rods where the contact point is very
close to the center of mass of one of the rods, its translational energy diminishes while its rotational
movement is less affected. Moreover, the continuous energy dissipation induces the decrease of
the collision frequency and, as a result, this weak symmetric breaking mechanism unbalances the
energy interchange process. Moreover, this effect is enhanced as the rods get shorter, because this
type of collision occurs more frequently. This trend was earlier reported, while studying the free
cooling of monodisperse ellipsoids25,26 and rods.45

Fig. 5 illustrates the temporal dependence of the ratio between the marginal translational
temperature of the rods TR(t) and the total temperature T(t), defined by Eq. (1). Remarkably, after a
short transient, TR

T
(t) converges to its corresponding analytical value of Eq. (14), which describes its

dependence of the mixture composition β assuming full energy equipartition among all degrees of
freedom. Thus, free cooling granular mixtures reach an asymptotic long-time homogeneous cooling
behavior, where the energy distribution among degrees of freedom remains invariant. Moreover,
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FIG. 4. Evolution of the ratio between the marginal rotational θ and translational TR granular temperatures of the rods vs
time. Outcomes obtained for different compositions are illustrated [(a) β = 0.25, (b) β = 0.5, (c) β = 0.75 and (d) β = 1.0].
For comparison, the expected result assuming energy equipartition θ

TR
= 2

3 is shown.

in systems composed of spheres and rods with ξ > 1.5, the amount of energy stored by each
component of the mixture only depends on mixture composition β.

In Fig. 6, we represent the evolution in time of the granular temperature T (t)
T (0) , obtained for

mixtures of spheres and rods with different elongations. As expected from the previous observations
in weak dissipative systems, the ensemble of particles uniformly reduces its temperature, reach-
ing a homogeneous cooling regime. The granular temperature T(t) is compared to the analytical
prediction of Eq. (4). Note, in each case the real simulation time is rescaled with its correspond-

ing analytical prefactor, resulting in a time scale τ(ξ, β) = (1−α2)
2 nΓ̃o(ξ, β)


T (0)
m

t, where Γ̃o(ξ, β)
is defined by Eq. (15), where DRS(ξ) is used as fitting parameter, comparing the numerical data
of T (t)

T (0) with Haff’s law. Recall that DRS(ξ) and DRR(ξ) in Eq. (15) quantify the efficiency of
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FIG. 5. Evolution of the ratio between the translational temperatures TR of the rods and the total temperature of the mixture.
Outcomes obtained for different compositions are illustrated [(a) β = 0.25, (b) β = 0.5, (c) β = 0.75 and (d) β = 1]. For
comparison, it is shown the expected result TR

T =
1((1−β)+ 5

3 β
) , assuming equipartition.

the energy transfer between rotational and translation degrees of freedom for collisions between
sphere-rod and rod-rod, respectively. DRR(ξ) is identical to that obtained (assuming equipartition)
for a monodisperse granular gas composed of rods, i.e., the limiting case β = 1.45

The data collapse (see Fig. 6), in a wide domain of aspect ratio ξ = [1.25 − 4.0], and the excellent
agreement with the analytical prediction are noticeable. Remarkably, we found a homogeneous cool-
ing regime, where energy of the system uniformly diminishes and the time dependency of all intensive
properties is described by the granular temperature T(t). Furthermore, our numerical outcomes are
in good agreement with a mean field theory introduced in Section II, and the relevant time scale of
the cooling process is mainly determined by the mixture composition β and particle elongation ξ.

Fig. 7 shows the values of DRS(ξ) and DRR(ξ) obtained from the collapse of all the curves and
their comparison with Haff’s law. For sake of simplicity, the data values are given in terms of 4πσ2
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FIG. 6. Evolution of the granular temperature T (τ)/T (0), defined as Eq. (1) vs the characteristic time τ, note the scaling

of all the curves when using the characteristic time τ(ξ)= (1−α2)
2 nΓ̃o


T (0)
m t . The numerical data corresponding to particles

with different elongations and restitution coefficient (α = 0.90) are included. Outcomes obtained for different compositions
are illustrated [β = 0.25, β = 0.5, β = 0.75 and β = 1.0].

(see Eq. (15)), i.e., the surface of a sphere with the same volume. Recall that DRS(ξ) quantifies
the efficiency of the energy transfer between rotational and translation degrees of freedom, as well
as, its particle’s size dependence, in collisions between spheres and rods with the same mas and
volume. As we pointed out earlier, this procedure allows us to numerically determine DRS(ξ).
Note, the values of DRS(ξ) and DRR(ξ) are obtained comparing the numerical data of the granular
temperature T (t)

T (0) , with the analytical formula Eq. (4), using the time scale τ(ξ, β) and fitting a
single parameter DRS(ξ). We found that the values of DRS(ξ) are smaller than their corresponding

FIG. 7. Values of the numerical estimation of DRS(ξ), obtained collapsing each numerical data (see Fig. 6) of the total
temperature T (t )

T (0) and its corresponding analytic prediction of Eq. (4).
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DRR(ξ) values. As expected DRS(ξ) does not depend on the mixture composition β, within our
numerical uncertainties. Our outcomes suggest that regardless of particle’s elongation the energy
transfer between degrees of freedom is less efficient in rod-sphere collisions in comparison with
rod-rod collisions.

In conclusion, we theoretically investigated the cooling dynamics of a binary mixture of fric-
tionless spherical particles and rods. A generalized mean field analytical theory accounting for the
cooling dynamics of the mixture has been formulated. Complementarity, using a hybrid GPU-CPU
architecture, we have numerically explored a HCS of dilute granular mixtures composed by 3D of
spherocylindrical particles and spheres with the same volume. Regardless of the particle shape, we
have numerically found that the cooling process has two stages. First, a transient regime is observed,
but in general the granular temperature of each species quickly decays towards a final state where
the remaining energy is equally redistributed among the degrees of freedom of the two species.
Hence, while the system temperature diminishes, there is energy balance between species and the
ratio between the translational kinetic energy of the two species TR

TS
(∞) ≈ 1 is maintained. Mean-

while, in this final state the ratio of the energy corresponding to the internal degrees of freedom of
the rods is a constant value θ

TR
(∞). We obtained that increasing the rods’ aspect ratio, the energy

equipartition is notably favored θ
TR

(∞) ≈ 2
3 . Moreover, we found that regardless of the initial condi-

tions, multiple collisions lead to a quick energy interchange between species, which suggests that
the memories effect are very weak. That is also supported by the fact that similar outcomes were
attained with a much higher volume fraction ηr = 0.045 (actual value ηr = 0.007). Furthermore,
we use the scaling properties of the HCS to obtain numerically the functional form of DRS(ξ).
This quantity controls the energy transfer between rotational and translation degrees of freedom,
in collisions between spheres and rods with the same mass and volume. Note that DRS(ξ) is a key
ingredient, when analytically examining the mixture cooling kinetics and, unfortunately, this has
not been analytically calculated, so far. Finally, we anticipate that introducing particle friction has
a significant influence on the mixture cooling kinetics, due to the fact that rod’s azimuthal and
polar rotational degrees of freedom evolve with different characteristic times. These issues will be
investigated in future works.
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APPENDIX: EVALUATION OF THE COOLING COEFFICIENT

In order to evaluate Γ (cf. Eq. (3)), it is sufficient to consider the following integral:

ζ12 =


f1(u1,ω1, γ1) f2 (u2,ω2, γ2) |u12|∆E12ds12du1du2dω1dω2dγ1dγ2, (A1)

corresponding to the cooling rate due to collisions between two smooth biaxial rigid bodies “1” and
“2,” with the infinitesimal cross section ds12 given by the relation,42,43

|u12| ds12 = (c12 · n) S (n, γ1, γ2) dn,

where S12 (n, γ1, γ2) dn is the infinitesimal surface element on the excluded volume of the colliding
bodies. Substituting the change of energy ∆E12 in Eq. (A1), using Eqs. (9) and (10), and defining

ω2
1 ≡

I1

θ1
ω2

1,

u2
12 ≡

3m
2
�
TR1 + TR2

�u2
12,
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and

u2
c ≡

3m
�
TR2u1 + TR1u2

�2

2
�
TR1 + TR2

�3 ,

one obtains

ζ12 = −
�
1 − α2�

2π5

1
Ω2

�
TR1 + TR2

�3

T
3
2

R1
T

3
2

R2


e
−
(

T
TR1
+TR2

)2
u2
c−u2

12−ω
2
1−ω

2
2(c12 · n)3

× S (n, γ1, γ2) dnducdu12dω1dω2dγ1dγ2.

The integral over uc and the components of u12 in the plane perpendicular to n can readily be
performed to yield

ζ12 = −
1
Ω2

�
1 − α2�

2π
5
2


e−(u12·n)2−ω2

1−ω
2
2µ (r1,r2,n) (c12 · n)3

× S (n, γ1, γ2) dnd (u12 · n) dω1dω2dγ1dγ2.

Next, following Ref. 44 build the 5 dimensional vector (ω1, ω2,g) and perform an orthogonal linear
transformation

(ω1, ω2,g) → ξ =
(ξ1,ξ2,ξ3

)
,

where g ≡ u12 · n, so that one of the unit vectors ε of the rotated frame verifies

ξ · ε ∝ c,
ε · ε = 1,

where

c ≡


3m
2 (TR2 + TR1) (c12 · n) .

The vector ε is given by

ε = 1
D
*
,


3m
2I1

θ1

TR2 + TR1
a1,


3m
2I2

θ2

TR2 + TR1
a2,1+

-
,

where a1 ≡ (r1 × n), a2 ≡ − (r2 × n), and

D2 = 1 +
3m
2I1

θ1

TR2 + TR1
(r1 × n)2 + 3m

2I2

θ2

TR2 + TR1
(r2 × n)2.

One has ξ · ε = c
D , so that

ζ12 = −
1
Ω2

�
1 − α2�

2π
7
2

(
3m
2T

T
TR2 + TR1

)− 3
2


e−(ξ2
1+

ξ2
2+

ξ3)µ (r1,r2,n) D3
(ξ · ε)3

× S (n, γ1, γ2) dndξ1dξ2dξ3dγ1dγ2.

Performing the integration over ξ1, ξ2, and ξ3 yields

ζ12 = −
2
9

√
3
√
π

�
1 − α2� T

3
2
√

m

(
TR2 + TR1

2T

) 3
2 1
Ω2

 (
1 + 3m

2I1
θ1

TR2+TR1
(r1 × n)2 + 3m

2I2
θ2

T2+T1
(r2 × n)2) 3

2

1 +
(
m

2I1
(r1 × n)2 + m

2I2
(r2 × n)2)

× S (n, γ1, γ2) dndγ1dγ2.

Using the above expression to evaluate the three contributions in Eq. (3) yields expression (11) for
the cooling coefficient Γ (where notice that a factor 1/2 multiplies the rod-rod and sphere-sphere
contributions to avoid double counting).
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