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a b s t r a c t

We study a spatial model of social interactions. Though the properties of the spatial equilib-

rium have been largely discussed in the existing literature, the stability of equilibrium remains

an unaddressed issue. Our aim is to fill up this gap by introducing dynamics in the model and

by determining the stability of equilibrium. First we derive a variational equation useful for

the stability analysis. This allows to study the corresponding eigenvalue problem. While odd

modes are shown to be always stable, there is a single even mode of which stability depends

on the model parameters. Finally various numerical simulations illustrate our theoretical re-

sults.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The economic literature on spatial agglomerations has

been emphasizing the role of increasing returns in the pro-

duction sector as favoring the spatial clustering of economic

activities, see [1]. However, it is known that both market

and non-market forces play an important role in determining

the balance between agglomeration and dispersion forces in

a spatial economy. In particular, social interactions through

face-to-face contacts also contribute to the gathering of in-

dividuals in villages, agglomerations, or cities, see [2]. Beck-

mann [3] introduced social interactions into a land market

model. In his model, the spatial equilibrium structure results

from the interplay between the agglomeration force gener-

ated by social interactions and the dispersion force chan-

neled by land prices. Beckmann’s work has been revisited by

Fujita and Thisse [4], Mossay and Picard [5], and Blanchet

et al. [6] by studying further the properties of the spatial

equilibrium. In particular, Mossay and Picard [5] have shown

that Beckmann’s equilibrium along a segment is unique and
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have extended the analysis along a circle. Blanchet et al. [6]

have extended Beckmann’s framework so as to encompass

general agents’ preferences: along a segment, the uniqueness

of spatial equilibrium holds for a large class of utility func-

tions. Though the static aspects of Beckmann’s framework

have been largely studied, dynamic aspects of the model

have not received attention yet. The purpose of this paper

is to study the stability of spatial equilibrium in Beckmann’s

model, an issue which is left unaddressed in the existing

literature.

First, we extend the spatial model of social interactions

by Mossay and Picard [5] to a dynamic setting accounting for

the fact that individuals tend to relocate to locations provid-

ing them with higher utility levels. This leads to an integro-

differential equation governing the evolution of the popula-

tion distribution over space and time. In the New Economic

Geography literature (see e.g. [1]), most models are often dis-

crete and usually involve a small number of locations. In that

case, stability methods require the study of a finite number

of eigenvalues (e.g. [7,8]). In that literature, dynamic models

set in continuous space, as is the case here, are rare. The few

existing studies rely on the method of normal modes to ana-

lyze stability; e.g. [1,9,10] or [11]. In contrast here, we derive

a variational equation for stability, and only then study the

even and odd modes of the eigenvalue problem.

http://dx.doi.org/10.1016/j.chaos.2015.11.040
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Fig. 1. Steady solution λ(s)(x) for α = 1, β = 2 and τ = 1 such that δ = 1 and

b = π/2.
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Second, we present various numerical simulations illus-

trating our theoretical results. For this purpose we perform

simulations for stable and unstable parameter configurations

as well as for various initial conditions such as uniform ran-

dom noise or multiple-center configurations.

Section 2 provides the dynamic extension of the

model. The stability analysis is presented in Section 3. In

Section 4, numerical simulations are performed and ex-

plained. Section 5 concludes.

2. The spatial model of social interactions

Our model builds on the spatial model of social interac-

tions by Mossay and Picard [5], and Blanchet et al. [6] along a

line segment. Let us denote the density of agents in location

x at time t by λ(x, t). Agents benefit from social contacts with

other agents. In order to establish those contacts, agents have

to travel along the segment. The social utility that an agent in

location x derives from interacting with other agents is given

by

S(x, t) = α

∫
λ(y, t) dy − τ

∫
|x − y|λ(y, t) dy (1)

where the first integral describes the social interactions with

other agents with α > 0 and the second one accounts for the

traveling cost incurred to meet them with τ > 0. The utility

V(x, t) of agents consists of the social utility minus a disutility

resulting from congestion

(x, t) = S(x, t) − β λ(x, t) (2)

where βλ(x, t) is the congestion cost with β > 0. In [5],

the congestion cost results from congestion in the land mar-

ket: higher agent densities lead to higher land prices, which

translates into a disutility. In that paper, the agents’ prefer-

ence for land is chosen so that the resulting congestion cost

is linear in λ, which is the functional form we also retain in

this paper.

We now extend the static framework established by

Mossay and Picard to a dynamic setting. In our model,

agents tend to relocate towards locations providing them

with higher utilities:

∂λ

∂t
= k [V (x, t) − V̄ (t)] λ(x, t) (3)

where V̄ (t) denotes the first spatial moment of the utility,

∫λ(y, t)V(y, t) dy, and k > 0 a mobility parameter.

2.1. Invariant manifold

By integrating Eq. (3) over the whole domain and by de-

noting :

I =
∫

λ(y, t) dy , (4)

we obtain the following equation for I:

dI

dt
= kV̄ (t) [1 − I] , (5)

we see that I = 1 is an invariant manifold associated with

the dynamics given by Eq. (3). The transverse stability of this

manifold is given by the sign of V̄ . If V̄ > 0 the manifold is

locally stable. We will return to this point latter.
2.2. Steady-state solution

Let us now look for a steady-state solution to Eq. (3). If

such a solution exists it satisfies:

(x, t) = V̄ (t) = constant (6)

or equivalently

τ

∫
|x − y|λ(s)(y) dy + β λ(s)(x) = constant (7)

where the superscript s denotes the steady-state solution. By

construction, the steady-state solution of our model corre-

sponds to the spatial equilibrium studied in [5]. Without loss

of generality, we restrict the search for a steady-state solu-

tion on finite support. Therefore, we can assume that λ(s)(x)

is centered around x = 0 with support [−b,+b]. By differen-

tiating Eq. (7) twice with respect to x, Mossay and Picard [5]

derived the spatial equilibrium equation as

∂2λ(s)(x)

∂x2
+ δ2 λ(s)(x) = 0 , (8)

where δ2 = 2τ/β . Taking into account the continuity of the

solution at support edges, the steady-state solution is given

by

λ(s)(x) =
{

C cos(δx) for x ∈ [−b,+b]

0 for x /∈ [−b,+b]
. (9)

Now we will be interested mainly in studying solutions that

are contained into the invariant manifold I = 1. Therefore we

can compute the parameters b and the amplitude C as a func-

tion of the problem parameters as follows:

b = π

2δ
= π

2
√

2

√
β

τ
; C = δ

2
=

√
τ

2β
. (10)

Once the steady-state solution is determined we can com-

pute V̄ explicitly as a function of the model parameters:

¯ = p = α − π

2
√

2

√
βτ . (11)

where we define the parameter p that is linked to the stability

of the invariant manifold. If p > 0 the invariant manifold I = 1

is transversely stable. The solution (9) is represented in Fig. 1

for some specific parameter values.

The above steady state, once the parameters α, β , τ have

been fixed, has been shown to be unique, see [5], or [6]. The

main purpose of this paper is to study the stability of the
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steady-state solution of Eq. (9) with respect to the dynamics

introduced in Eq. (3).

3. Variational equation for stability

3.1. Symmetries of the problem and relevant function spaces

Before ever starting the calculations of the stability of Eq.

(9), some general considerations about the symmetries asso-

ciated with the problem will simplify the calculations. First of

all Eq. (3) is a partial integro-differential equation with two

independent variables space (x) and time (t). As with respect

to time we may consider functions that are of class C1 with

respect to time. Because time does not appear explicitly in

Eq. (3) the equation is an autonomous equation with respect

to time so that any time translation of a solution will still

be a solution of the problem. In physics, this translates the

existence of a Goldstone mode associated with time transla-

tion invariance. It also relates to energy conservation in the

case of Hamiltonian systems (see Noether’s theorem). In our

problem, this symmetry can be broken by imposing an ini-

tial condition at time t = t0. This is precisely what we will do

in the following when computing the stability of the steady-

state solution λ(s) derived in Eq. (9) in the previous section. As

with respect to space, there is no spatial derivative appearing

in Eq. (3) so that we can work with spatial functions defined

in a Hilbert space (e.g. functions that are squared-integrable).

By inspection of the spatial part of Eq. (3) there are two im-

mediate symmetries associated with the problem. The prob-

lem is invariant to any spatial translation (if the functions are

defined in an unbounded domain) so that there is a Gold-

stone mode associated with this translational invariance. In

addition, another invariance holds by the inversion symme-

try ( x → −x; y → −y). This last symmetry will allows to sep-

arate the stability problem into the computation of even- and

odd-eigenfunction sectors of the variational equation [12].

On the ground of physical considerations we will work on

finite domains and consider the compact support [−b,+b] of

the steady solution λ(s) as our spatial domain for the stability

analysis. It should recalled that from Eq. (10) there is a direct

link between the support on which the steady-state λ(s) is

defined and the parameters of the problem. Therefore, even if

we restrict the stability study to the invariant manifold I = 1,

we have a family of solution λ(s) rather than a unique solu-

tion. As we will see in the following the stability of the solu-

tions λ(s) is directly related to the parameter b.

3.2. Perturbation of the steady-solutions

The stability of the solutions λ(s) can be analyzed by per-

turbing the solution and writing the corresponding varia-

tional equation. In the following we consider a small per-

turbation parameter ε and λ(p)(x, t) the perturbation to the

steady-state solution.

λ(x, t) = λ(s)(x) + ε λ(p)(x, t). (12)

Note that as for λ(s), λ(p) verifies that λ(p)(−b, t) =
λ(p)(b, t) = 0. In order to simplify the notation we can define

the following linear functional of λ:

L[λ] = α

∫
λ dx − τ

∫
|x − y|λ dy − β λ (13)
where the integral extends over the whole spatial domain. By

using this notation Eq. (3) can be rewritten as:

1

k

∂λ

∂t
=

{
L[λ] −

∫
L[λ] λ dx

}
λ (14)

If we insert Eq. (12) into Eq. (14) we get at order ε:

1

k

∂λ(p)

∂t
=

{
L[λ(p)] −

∫
L[λ(s)] λ(p) dx

−
∫

L[λ(p)] λ(s) dx

}
λ(s) (15)

which constitutes the variational equation governing the sta-

bility of the steady-state family of solution λ(s). In order to

solve Eq. (15) we first use the principle of separation of vari-

ables:

λ(p)(x, t) = A(t) F (x) (16)

By plugging Eq. (16) into Eq. (15) and by separating the time

and space functions we get a system of two equations:

Ȧ(t) = k σA(t) (17)

{
L[F ] −

∫
L[λ(s)] F dx −

∫
L[F ] λ(s) dx

}
λ(s) = σ F (18)

where the over-doted symbol in Eq. (17) stands for a time

derivative. Eq. (18) is an eigenvalue problem for the eigen-

function F(x) with eigenvalue σ . We note that this eigen-

value problem is a Fredholm equation of the second kind and

there are several well known techniques for finding the cor-

responding solution set of these eigenvalues and eigenfunc-

tions [13,14].

3.3. Solution to the eigenvalue problem (even modes)

The right-hand-side of Eq. (18) is a linear operator that

commutes with the inversion symmetry operator R:

R F (x) = F (−x), (19)

therefore by using Schur’s lemma [12] we can separate the

solution of the eigenvalue problem into even and odd eigen-

modes. Let us start with even modes. Because eigenfunctions

are defined up to a multiplicative constant we can impose a

normalization condition for the even eigenfunctions F(x) so

that:∫
F dx = 1 ; or

∫
F dx = 0 , (20)

The latter case (with the integral equal to zero) is a “patho-

logical” case that can be easily dealt with by noting that it

corresponds to a mode that perturbs the solution by staying

inside the invariant manifold I = 1, see the stability of the in-

variant manifold in Section 2.1. Let us now deal with the case

where the eigenmode is normalized to one. By integrating

Eq. (18) over the whole domain and using the normalization

condition we readily obtain that:

σ = −L[λ(s)] = −p = −α + bτ = −α + π

2
√

2

√
β τ , (21)

where p is the parameter defined in Eq. (11). By inspection

we also find the corresponding even eigenfunction:

F = λ(s)(x), (22)
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Fig. 2. Approximate odd eigenmodes computed by two methods. (a) By us-

ing the Fourier sine expansion with N = 50 (m = 1 is the mode with σ̃ → 0)

with the last one corresponding to the mode with σ̃ → −π/4. (b) By using

the Neumann series to avoid the Gibbs phenomenon related to the Fourier

expansions [13]; here only the first (m = 1) and last modes (least and most

stable) are shown. The spatial support is normalized between [1,1].
For the even sector of the eigenvalue problem there is a single

discrete eigenvalue and the corresponding eigenfunction has

the same shape as the steady-state solution λ(s). The steady-

state solution is linearly stable to even perturbations if:

σ = −α + bτ = −α + π

2
√

2

√
β τ < 0, (23)

which means that the α term is stabilizing and the β and

τ terms are destabilizing. We see that there is a critical size

for b, b(c) = α/τ, above which the steady solution is unsta-

ble to even perturbations. Therefore, concentrated cities (b <

b(c)) are stable while dispersed cities (b > b(c)) are linearly

unstable with respect to even perturbations. It should also

be noted that the stability result of even eigenmodes leads to

the same conclusions as the stability problem of the invariant

manifold I = 1 that we have performed in Section 2.1.

3.4. Solution to the eigenvalue problem (odd modes)

Let us now concentrate on the odd sector of the eigen-

value problem Eq. (18). For the odd eigenfunctions F (−x) =
−F (x) we have always that:∫

F dx = 0 (24)

and Eq. (18) is reduced to a simpler expression:

−λ(s)(x)
{

τ

∫
|x − y|F (y) dy + βF (x)

}
= σ F (25)

We look for the solution to Eq. (25) by using a sine Fourier

expansion on the compact domain [−b,+b]:

F (x) =
+∞∑
n=1

un sin
nπx

b
. (26)

By plugging Eq. (26) into Eq. (25) and by multiplying by

sin (mπx/b) (∀m ∈ N ) and then by integrating over the whole

domain we straightforwardly get the eigenvalue problem in

matrix form:

A(m,n) un = σ̃ δ(m,n), (27)

where σ̃ = bσ/β and an explicit expression for the matrix in

term of its indices can be written:

A(m,n) =
−8 m n (−1)(m+n) (1 − 4n2 + 16m2 − 16m4)

[16n4 + (1 − 4m2)2 − 8 n2(1 + 4m2)](1 − 4m2)2
,

(28)

At this stage we have transformed the solution of the odd

eigenfunction problem into the solution of a “simpler” ma-

trix problem. However, there are two important caveats to

this operation. First of all in our case we are computing “im-

proper” eigenfunctions. We will see below that we actually

need an infinite sum of modes to converge to the solution.

In addition the solution toward which the sum is converging

is exiting our initial Hilbert space and we rather need to use

Schwartz distributions to describe the “improper” odd eigen-

function space. Plainly said, the Hilbert space is too narrow

to contain the continuous spectrum of the odd-eigenvalue

problem and we have to extend it to a ridged Hilbert space

[14]. After being warned about the meaning of solutions

given by Eq. (28), we may still compute them to get an idea of

the spatial structure of odd eigenfunctions. As an illustration,
we set the matrix dimension to N = 50 and solve numeri-

cally the eigensystem given by Eq. (28) and then reconstruct

the N = 50 eigenmodes associated with the problem by using

Eq. (26) where the upper limit of the sum is now restricted

to N. Fig. 2 depicts the odd eigenmodes computed by two

different methods, first by the Fourier method (using an ex-

pansion of N = 50 terms) and second by the Neumann series

method which is a classical method to compute the solution

of an integro-differential equation (Fredholm second kind)

[13]. The Neumann method is an iterative method for solving

integral equations that only gives the mode with the largest

(in modulus) eigenvalue. This method is reminiscent to the

power method that is used in algebra to extract the largest

eigenvalue of a matrix. Like the power method, the Neumann

method can be adapted by shifting the spectrum to compute

also the smallest eigenvalue. Note that in our numerical cal-

culations we have computed only the odd-eigenmodes for

x > 0 by using the symmetries of the problem. For the odd-

eigensystem sector we have found a “continuous” spectrum

of eigenvalues in the range:

σ̃ ∈ (−π/4; 0), (29)

or equivalently:

σ ∈
(

−
√

β τ

2
; 0

)
, (30)

that means that all the eigenvalues associated with the im-

proper eigenmodes are stable (or marginally stable for σ →
0). Note that the latter is the least stable eigenmode and we

see from Fig. 2 (m = 1) that it corresponds to the “approx-

imate” Goldstone mode of translation as expected by our

preliminary symmetry considerations. The second and third

(m = 2 and m = 3) modes also provide important informa-

tions about where the system is more susceptible to be effi-

ciently perturbed, which is close to the domain boundaries

(x = −b and x = b) where the perturbations induced by the

odd modes are the most dangerous even if they are linearly

stable. The most stable odd eigenmode is depicted in Fig. 2

(denoted by the label “last” in the figure). We see that its
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Fig. 3. Convergence of the eigenvalue of the odd eigenvalue problem as

a function of the matrix dimension N. The three least stable modes tend

to zero (by negative values). The most stable mode tends to σ̃ → −π/4.

In order to show more clearly its convergence rate we have rather plotted

1 + 4σ̃ /π for the last mode. m = 1 (blue squares); m = 2 (orange diamonds);

m = 3 (green triangles) ; m = last (red circles). (For interpretation of the

references to color in this figure legend, the reader is referred to the web

version of this article.)
spatial structure indicates that the perturbation close to the

city “center” are the least dangerous for the stability of the

steady solution λ(s).

Fig. 3 illustrates the rate of convergence of the odd-

eigenvalues as a function of the matrix size N. We see that
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as the matrix dimension increases the density of eigenvalues

covering the range σ̃ ∈ (−π/4; 0) increases. All these eigen-

modes are stable (negative σ̃ ) but they provide interesting

information about where the perturbations on the steady so-

lution will be the most dangerous, i.e., near the boundaries of

the city. In the next section we illustrate by direct simulation

of Eq. (3) all the theoretical results that we have obtained so

far.

4. Numerical simulations of the model

In this section we will consider direct numerical simu-

lations of Eq. (3) where the numerical domain is not lim-

ited to the support [−b,+b] of the steady state solution. In-

stead, the perturbation affects a larger support, e.g. a support

twice as large as the support that defines the steady state, i.e.

[−2b,+2b].

The numerical solution is performed by a straightforward

scheme where the time step of integration is set to dt =
0.001. We use 401 equidistant spatial points to discretize the

support [−2b,+2b] and integrate Eq. (3) by selecting an ini-

tial condition at time t = 0. All the integrals are evaluated by

using Simpson’s rule.

4.1. Starting with slightly perturbed steady solutions

Fig. 4 (a–d) illustrate two examples of such simula-

tions. Fig. 4(a) and (b) show the results of the simulation
b

d
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dy state solution, i.e. for x ∈ [−2b,+2b]. (a) Space-time plot of λ(s)(x) initially

l state (red) of the simulation of (a). (c) Space-time plot of λ(s)(x) initially

nal state (red) of the simulation of (c). The parameters for simulations (a)

; β = 1/2; b = π/4; σeven = −p ≈ −0.215). The parameters for simulations

1; τ = 1; β = 2; b = π/2; σeven = −p ≈ 0.57). (For interpretation of the

his article.)
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Fig. 5. Numerical simulations starting from uniform noise for x ∈ [−2b,+2b]. (a) Space-time plot of λ(x, t) with initial uniform noise η ∈ (0; +0.2) and (b)

temporal snapshots of (a) for t = 0 (black); t = 50 (green); and t = 150 (red). (c) Space-time plot of λ(x, t) with initial uniform noise η ∈ (0; +0.3) and (b)

temporal snapshots of (a) for t = 0 (black); t = 30 (green); and t = 60 (red). The parameters for simulations (a) and (b) are chosen in the stable region of the

invariant manifold (k = 1; α = 1; τ = 1; β = 1/2; b = π/4; σeven = −p ≈ −0.215). The parameters for simulations (c) and (d) are chosen in the unstable region

of the invariant manifold (k = 1; α = 1; τ = 1; β = 2; b = π/2; σeven = −p ≈ 0.57). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
when the initial condition is such that the steady solution

is stable. To illustrate such a case we have selected the

parameters for simulations (a) and (b) to be : k = 1; α =
1; τ = 1; β = 1/2; b = π/4. In that case the even eigen-

mode has a negative eigenvalue: σeven = −p ≈ −0.215. We

see that the initially perturbed solution is pushed back to

the corresponding steady solution Eq. (9) by the relocation

dynamics.

On the contrary, if we select the parameters for simu-

lations (c) and (d) to be : k = 1; α = 1; τ = 1; β = 2; b =
π/2. The even eigenmode has a positive eigenvalue: σeven =
−p ≈ 0.57 and even if the perturbations added to the steady

solution are order of magnitudes smaller than in the case

of Fig. 4(a) and (b), we see in Fig. 4(c) and (d) that Eq. (9)

is unstable and we also observe that the most dangerous

eigenmode (even) has the same shape as the steady solution.

Fig. 4(c) shows that a slight perturbation of λ(s)(x) leads to

a blow up of the solution in finite time as also illustrated in

Fig. 4(d).

4.2. Starting from uniform random noise

Let us now use our numerical solver to study the evo-

lution of an initial uniform random noise. Fig. 5(a) and (b)

show the results of the simulation when the parameters are

selected in the stable region of the steady solution (same pa-

rameters as for Fig. 4(a) and (b)). Fig. 5(a) and (b) illustrates

that the initial noise is conditioned to evolve through the
dynamics to the steady solution. The time scale associated to

the evolution to the steady solution is related to the intensity

of the initial random noise.

Fig. 5 (c) and (d) show the results of the simulation when

the parameters are selected in the unstable region of the

steady solution (same parameters as for Fig. 4(c) and (d)). In

this case the steady solution is unstable but if we select care-

fully the initial noise intensity such that the initial noise is

almost on the invariant manifold I = 1 (but slightly below it).

We observe in Fig. 5(c) and (d) that during some transient

we can observe the steady solution but the latter is unstable

and finally vanishes. If we had selected (not shown) the ini-

tial noise such that I > 1 the simulation would blow up in

finite time as it was the case in Fig. 4(c) and (d).

4.3. Initial “twin” cities

To end up with these simulation examples of Eq. (3) we

consider an initial condition with two cities that locate next

to each other. As already shown by Mossay and Picard [5],

this is not a steady-state solution of the model. Here, we

will illustrate the instability of this initial condition and the

convergence to the stable unique steady solution. Here, we

have taken the same parameters as for Fig. 4(a) and (b).

The initial condition is normalized to be on the invariant

manifold and we see in Fig. 6(a) and (b) that the system

evolves rapidly towards the center between the two cities
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Fig. 6. Numerical simulations starting from “twin” cities for x ∈ [−2b,+2b]. (a) Space-time plot of λ(x, t)and (b) temporal snapshots of (a) for t = 0 (black);

t = 10 (green); and t = 40 (red). The parameters are chosen in the stable region of the invariant manifold (k = 1; α = 1; τ = 1; β = 1/2; b = π/4; σeven = −p ≈
−0.215). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and forms a single city that corresponds to the steady-state

solution.

5. Conclusions

We have extended Beckmann’s spatial model of social in-

teractions to a dynamic setting by introducing relocation dy-

namics. This allows us to study the stability of spatial equilib-

rium. We have studied the variational equation associated to

the stability of the steady solution. We have shown that the

even eigenmode sector can be stable or unstable depending

on the system parameters. We have also shown that the odd

eigenmode sector is always stable. There is a marginal mode

in the odd eigenmode sector that is associated with a Gold-

stone mode (uniform spatial translation of the whole sys-

tem). All our stability results have been illustrated and con-

firmed by direct numerical simulations.
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