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Abstract Very recently, we have examined experimentally
and numerically the micro-mechanical details of monodis-
perse particle flows through an orifice placed at the bottom
of a silo (Rubio-Largo et al. in Phys Rev Lett 114:238002,
2015). Our findings disentangled the paradoxical ideas asso-
ciated to the free-fall arch concept, which has historically
served to justify the dependence of the flow rate on the outlet
size. In this work, we generalize those findings examining
large-scale polydisperse particle flows in silos. In the range
of studied apertures, both velocity and density profiles at the
aperture are self-similar, and the obtained scaling functions
confirm that the relevant scale of the problem is the size of the
aperture. Moreover, we find that the contact stress monoton-
ically decreases when the particles approach the exit and
vanish at the outlet. The behavior of this magnitude is prac-
tically independent of the size of the orifice. However, the
total and partial kinetic stress profiles suggest that the out-
let size controls the propagation of the velocity fluctuations
inside the silo. Examining this magnitude, we conclusively
argue that indeed there is a well-defined transition region
where the particle flow changes its nature. The general trend
of the partial kinetic pressure profiles and the location of the
transition region results the same for all particle types. We
find that the partial kinetic stress is larger for bigger parti-
cles. However, the small particles carry a higher fraction of
kinetic stress respect to their concentration, which suggest
that the small particles have larger velocity fluctuations than
the large ones and showing lower strength of correlation with
the global flow. Our outcomes explain why the free-fall arch
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picture has served to describe the polydisperse flow rate in
the discharge of silos.
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1 Introduction

Predicting themass flow rate during the discharge of silos has
been thoroughly attempted in the past years [2–5]. In general,
theoretical frameworks assume that close to the orifice there
is a region where the inter-particle forces diminish. Hence,
below this vault, the particlesmove as a dilute gas falling only
due to gravity. This was postulated by Brown and Richards
[3], who introduced the concept of free-fall arch. Nowadays,
this concept is widely used and researchers relate it to the
Beverloo’ correlation [6] and more recent approaches [7,8].
However, the idea of a free-fall arch implies the existence
of a stress discontinuity, which is difficult to justify theoret-
ically [9,10]. In addition, recent experimental efforts aimed
at proving the existence of such a transition have provided
non-conclusive outcomes [11,12].

On the other hand, there are several experimental restric-
tions in examining granular flows. A complete access to the
3D behavior of the grains is not feasible. Hence, there is a
real need to perform numerical simulations in this frame-
work. Discrete element modeling (DEM) is widely accepted
as an effective method to address engineering problems con-
cerning dense granular media [13]. Moreover, in typical
applications, the formulation of granular macroscopic fields
is also necessary. Thus, the micro-mechanical details, i.e.,
velocity and position of individual particles, allow one to find
the continuum field profiles using a coarse-grained average
technique [14–17]. Furthermore, with this homogenization
approach, the static and dynamic parts of the stress tensor
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are deduced in terms of contact forces and velocity fluctua-
tion, respectively. The ultimate aim is to achieve a continuum
mechanical description of granular flows based on themicro-
mechanics, which will help us to understand how particle
shape and polydispersity affect the pressure distribution and
jamming in granular flows [4,18–30].

In a previous work, we examined experimentally and
numerically the micro-mechanical details of monodisperse
particle flows through an orifice placed at the bottom of a
silo [1]. Our findings disentangle the paradoxical ideas asso-
ciated with the free-fall arch concept, which has historically
served to justify the dependence of the flow rate on the outlet
size. In this work, we generalize those findings, examin-
ing polydisperse 3D particle flows in silos. It is very well
known, however, that the response of polydisperse systems
to external excitation is difficult to predict because the local
interactions often lead to undesired segregation of particles
[31–33]. For sake of simplicity and to minimize segregation
effects, we have used a narrow particles size distribution,
which enforced a mass flow pattern in a silo rather than a
funnel flow pattern [34,35]. The paper is organized as fol-
lows: in Sect. 2, we introduce the numerical method and
the theoretical framework of the coarse-grained formulation
[14]. Then, in Sect. 3 we explain the implementation of the
coarse-grainedmethodology, which has been used to process
the numerical data, allowing to clarify the nature of the gran-
ular flow close to the orifice.

2 Model description

We introduce a hybrid CPU–GPUdiscrete element algorithm
for a polydisperse system of spheres. This numerical algo-
rithm is an improved version of themonodisperse case [1].As
a first step, to mimic the real experimental scenario, we gen-
erate a granular gas of N = 393, 216 monodisperse spheres
of radius rb = 1/64m. The particles are located at random
positionswithin a cylindrical container with a flat bottom and
radius Rc. Then, they settle under the effect of gravity and
the packing relaxes until its kinetic energy is several orders
of magnitude smaller than its potential energy. As a sec-
ond step, granular polydispersity is introduced by randomly
reducing the particle size. We use seven types of particle,
with the largest radius being rb, the smallest radius being
rs = rb

2 + � following an arithmetic progression with dif-
ference � = rb

16 . Thus, after implementing this procedure,
the system is composed of seven different sizes distributed
uniformly (see sketch of Fig. 1). As a final step, the parti-
cles are allowed to leave the system through a circular outlet
of radius R that is located at the bottom. A snapshot of the
three-dimensional silo is shown in Fig. 1.

In the simulation, each particle i has three translational
degrees of freedom and a quaternion formalism has been

Fig. 1 Snapshot of a numerical three-dimensional silo where the color
of the particles indicates their size. The sketch of particle types illus-
trates the system polydispersity

implemented for describing the 3D angular rotations [36,37].
The interaction between particle i and particle j is decom-
posed in normal and tangential directions. In our approach,
the normal interaction is defined by a linear contact, and to
introduce dissipation, a velocity-dependent viscous damping
is assumed. The tangential force also contains an elastic term
and a tangential frictional term accounting for static friction
between the grains. More details about the numerical imple-
mentation can be found in the Appendix 1.

2.1 Coarse-graining formulation

In order to explore the dynamical and mechanical properties
of the particle flow, a coarse-graining methodology is used to
analyze the results [14–17]. First, we access to the position
and velocities of every particle. According to [14–17], the
macroscopic mass density of a granular flow, ρ(r), at time t
is defined by

ρ (r, t) =
N∑

i=1

miφ (r − ri (t)) , (1)
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where the sum runs over all the particles within the system
and the coarse-grained (CG) function, φ(R). In our case, we
use a truncated Gaussian coarse-graining function φ(R) =
Awe−(|R|/2w)2 with cutoff rc = 4w where the value of w

defines the coarse-grained scale. Aw is calculated in order to
guarantee the normalization condition. Thus, the flow solid
fraction can be found ϕ (r, t) = ρ (r, t) /ρp, where ρp is the
material density (see Appendix 1).

Similarly, themacroscopicmass density of the component
j , ρ j (r), at time t is defined by

ρ j (r, t) = m j

N j∑

i=1

φ (r − ri (t)) , (2)

where the sum runs over the N j particles of radius r j .
Thus, the partial solid fraction can be found as ϕ j (r, t) =
ρ j (r, t) /ρp.

In the same way, the coarse-grained momentum density
function P(r, t) is defined by

P(r, t) =
N∑

i=1

miviφ (r − ri (t)) , (3)

where the vi represents the velocity of particle i . The macro-
scopic velocity field V(r, t) is then defined as the ratio of
momentum and density fields,

V (r, t) = P(r, t)/ρ(r, t). (4)

In order to define the mean stress field, we use a very ele-
gant and mathematically consistent definition of mean stress
σ̄αβ introduced by Goldhirsch [14]. Following this approach,
the total stress field σαβ is composed by a kinetic stress field
σ k

αβ and a contact stress field σ c
αβ . They are defined as

follows: the mean contact stress tensor reads as

σ c
αβ(r) = −1

2

N∑

i=1

Nci∑

j=1

fi jαri jβ

∫ 1

0
φ(r − ri + sri j )ds, (5)

where the sum runs over all the contacting particles i, j ,
whose center ofmass are at ri and r j , respectively.Moreover,
f i j accounts for the force exerted by particle j on particle i
and ri j ≡ ri − r j .

On the other hand, the kinetic stress field reads as,

σ k
αβ(r) = −

N∑

i

miv
′
iαv′

iβφ (r − ri (t)) , (6)

where the sum runs over all the particles, v′
i is the velocity

fluctuation of particle i , respect to the mean field.

v′
i (r, t) = vi (t) − V(r, t). (7)

Examining a polydisperse particle flow, we can focus our
attention on the way the kinetic stress is distributed between
particles of different sizes [38]. We define, the partial kinetic
stress field s jαβ related with particle type j , which reads as,

s jαβ(r) = −m j

N j∑

p

v′
pαv′

pβφ
(
r − rp(t)

)
, (8)

where the sum runs over the N j particles of type j , and v′
p

is the fluctuation of the velocity of particle p, respect to the
mean field. Note that σ k

αβ = ∑
t ypes s

j
αβ .

Based on the previous theoretical framework, we have
implemented a post-processing tool, which has allowed us
to examine the 3D kinetic fields. Complementary, all the
micro-mechanical properties of the simulated flow have been
explored in detail.

3 Results and discussion

Here, we examine the micro-mechanical properties of a
polydisperse granular system during a silo discharge. The
complexity of the particle flow has been described accessing
to all the micro-mechanical details. We explore the behavior
of the grains both in the proximities of the orifice and the
upper part of the silo.

First, we focus our attention on the particle flow rate
through the orifice placed at the bottom of the silo. Numeri-
cal outcomes obtained for several apertures are presented in
Fig. 2a. The time evolution of the mass flow rate W f (t) is

shown in terms of the characteristic time td =
√

2rb
g , which

is the time elapse in which a free falling particle moves a
distance proportional to its own diameter. Note that W f (t)
is the total mass that flow through the outlet, which can be
accurately measured. For comparison, we also estimate the
mass reduction of the silo Wr (t) by measuring the veloc-
ity of the upper surface vs (velocity of the highest particle).
Thus, Wr is estimated as Wr (t) = vsπR2

cρpϕbulk, where Rc

is the radius of the container and ϕbulk stands for the bulk
solid fraction, which is determined at a slab touching the
top surface of the material. In our numerical experiment, we
have found ϕbulk = 0.60 ± 0.02. The excellent agreement
between the values of Wr (t) and W f (t) indicates that the
segregation effects are very weak.

Additionally, in Fig. 2b, the values of flow rate are pre-
sented, but rescaled by ρpϕc(R)vc(R)πR2, where ϕc(R) and
vc(R) are the volume fraction and velocity at the orifice,
respectively. The collapse of the curves demonstrates that
regardless the system polydispersity, the only relevant length
scale governing the silo flow is the aperture size R. These
results resemble very recent experimental findings obtained
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Fig. 2 In a the time evolution of the flow rate in terms of the charac-

teristic time td =
√

2rb
g is shown for different outlet sizes. Outcomes

obtained for several apertures are presented. The symbols and lines cor-
respond to W f (t) and Wr (t), respectively. In b the values of flow rate
are rescaled ρpϕc(R)vc(R)πR2

for 3D bidisperse systems [39]. Moreover, it is noticeable
from the results that the system quickly evolves to a steady
state characterized by a constant flow rate. This fact allows
us to use the coarse-graining methodology described in Sect.
2.1 to examine the micro-mechanical details of the particle
flow [14–17]. Thus, the results presented next correspond to
time-averaged values at the steady state.

In Fig. 3a, we illustrate as a color map the spatial depen-
dence of the solid fraction ϕ (r) for a silo with an orifice
of R = 12rb. The fields are deduced using a Gaussian
coarse-graining function φ(R) with w = 2rb. The level of
rendering and the coarse-graining scale lead to an accurate
description of the solid fraction field. The excluded volume
effect of the orifice border is seen. The velocity field in the
vertical direction vz is presented in Fig. 3b. Note that both
coarse-grained magnitudes display monotonic behavior with
the height. When approaching the orifice, the velocity vz
increases, while the solid fraction ϕ f (r) decreases.

Fig. 3 Solid fraction a and vertical velocity b fields obtained for the
3D numerical polydisperse particle flow in a silo. In all cases R = 12rb
and a Gaussian coarse-graining function φ(R)withw = 2rb was used.
In the figures, the vertical coordinate, z, indicates the height from the
bottom of the silo, and the horizontal coordinate, r , the distance to center
of the silo

For comparison with the behavior of monodisperse sys-
tems [1], we check the radial dependency of the solid fraction
ϕ f (r) and vz(r) at the orifice. We systematically study the
system response, changing the orifice size R and the out-
comes are shown in Figs. 4 and 5. It is noticeable that both
fields reach maximum values (ϕ f (0) and vz(0)) at the center
of the outlet, while diminish close to the border. Interest-
ingly, the data values collapse when plotting ϕ f (r)/ϕ f (0)
versus r/R and vz(r)/vz(0) versus r/R. Thus, we can argue
that R is the relevant length scale when examining vz(r) and
ϕ f (r) at the orifice. Furthermore, the characteristic velocity
at the orifice scales is vz(R) ∼ √

R. These results resemble
similar findings obtained in experiments of two-dimensional
monodisperse systems [8] and three-dimensional bidisperse
systems [39].

Additional micro-mechanical details of the particle flow
can be obtained examining the stress fields. In Fig. 6, we
plot the spatial behavior of the contact pressure, which is
defined as the trace of the contact stress field. Note that the
contact pressure is a monotonic decreasing function of the
height. Furthermore, its behavior correlates to the increase of
the dilatancy, which achieves a maximum value at the outlet.
Here, it is important to remark that the values of contact pres-
sure were nearly independent of the outlet size. Accordingly,

123



Comp. Part. Mech.

Fig. 4 In a solid fraction
profiles at the orifice ϕ f (r)
(averaged in the azimuthal
direction) obtained for a
different outlet radius. b The
same data collapsed by the size
of the orifice

0 1 2 3 4 5 6 7
r / 2rb

0

0,1

0,2

0,3

0,4

0,5

ϕ f(r
)

 R = 12 rb
 R = 12 rm
 R = 12 rs

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

r/R

0

0,2

0,4

0,6

0,8

1

ϕ f(r
)/

ϕ f(0
)

(a) (b)

Fig. 5 In a velocity profiles at
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Fig. 6 Contact pressure field obtained for the 3D numerical poly-
disperse particle flow in a silo with an aperture size R = 12rb (data
averaged in the azimuthal direction). The post-processing is done using
a Gaussian coarse-graining function φ(R) with w = rb/2. In the fig-
ures, the vertical coordinate, z, indicates the height from the bottom of
the silo, and the horizontal coordinate, r , the distance to center of the
silo

a region resembling a free-fall arch cannot be inferred from
these findings.

Additionally, we analyze the strength of the total kinetic
pressure field, calculating the trace of the kinetic stress tensor
σ k

αβ(r) as defined byEq. (6). In Fig. 7, we illustrate the kinetic
pressure fields obtained for different sizes of the orifice.
Although the strength of the kinetic pressure is several orders
of magnitude smaller than the contact pressure, its spatial
pattern reveals novel micro-mechanical details. Thus, σ k

αβ(r)
conclusively establishes the existence of a well-defined tran-
sition region. In all cases, our numerical outcomes show that

far from the orifice, the particles follow the global macro-
scopic flow. This fact is related to the diminishing of the
kinetic pressure with the height and indicates that the mass
transport within the silo is mainly advective. However, as
the particles get closer to the exit, their individual movement
decorrelates to the global flow. Accordingly, σ k

αβ(r) shows a
maximum value at the transition surface. After crossing, the
particles fall by gravity and the total stress gradient slowly
diminishes as one gets closer to the outlet.

For sake of simplicity, we focus on the evolution of the
kinetic pressure along the vertical direction z at the center
of the orifice. Astonishing, the kinetic pressure profiles can
be collapsed, when normalizing the vertical coordinate with
R. As we pointed out earlier, far from the outlet, particles
follow a global macroscopic laminar flow where advection
dominates their movements and, as consequence, the kinetic
pressure is negligible. As the height decreases, the kinetic
pressure grows exponentially (see inset of Fig. 8) until it
reaches a well-defined maximum the location of which,
hc(R), depends on the aperture size R. The quality of the
collapse is lower on the upper part of the silo due to system
size effects.

In Fig. 9 we study the robustness of our procedure to
changes in the coarse-graining scale. To this end, the post-
processing of the data is performed using different values of
w. As it noticeable, though the values of σ k

αβ depends on w

[16,17,40], the findings are totally compatible and the loca-
tion of transition region hc(R) remains invariant. Thus, we
can conclude that though the kinetic stress is much smaller
than the contact stress, the scaling of its spatial profile with R
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Fig. 7 Color maps of the 3D kinetic pressure profiles (data averaged in
the azimuthal direction). In all cases, the post-processing is done using
a Gaussian coarse-graining function φ(R) and w = rp . Outcomes for
different aperture sizes are shown [a R = 12rb, b R = 12rm and c
R = 12rs ]

suggests its relevance explaining the discharge process. Sim-
ilar findings were obtained experimentally and numerically
in monodisperse systems [1].

We gain a better understanding of the role that the size of
the particle plays on the flow process, examining the cumu-
lative kinetic pressure. The cumulative values are obtained
using Eq. (6), but calculating the sum constrained to the par-
ticle size, i.e., including particles with (r > r ′). The values
of the cumulative kinetic pressure along the vertical direction
z at the center of the orifice are shown in Fig. 10. Note that
this magnitude equals the total kinetic stress in the limit case
(r > rs). It is noticeable from the results that the kinetic stress
is not shared uniformly among the different particle types.
However, the general trend of the kinetic pressure profiles
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Fig. 8 Vertical profiles of the kinetic pressure at the center of the silo
r = 0 as a function of z/R. In a outcomes for different outlet sizes R
are shown, the data collapse when normalizing the vertical coordinate
z with the size of the outlet R. The inset shows the same in semi-log
scale

0 10 20 30
z / 2rb

0

50

100

150

200

Tr
σ αβ

k
(0

)

 w = 2r
b

 w = r
b

 w = r
b
/2

hc

Fig. 9 Vertical profiles of the kinetic pressure at the center of the silo
r = 0 and as a functionof z/2rb. Thefields are deducedusing aGaussian
coarse-graining function φ(R) with different values of w. The inset
shows the same in semi-log scale

close and far from the orifice is very similar (see inset of
Fig. 10). Moreover, we found that in all cases, the location
of the transition region hc(R) remains invariant.

We also examine systematically the behavior of the par-
tial kinetic stress s jαβ(r) [defined by Eq. (8)], which accounts
for the kinetic stress stored in each type of particle. Intu-
itively, one could relate the difference in kinetic stress with
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Fig. 10 Vertical profiles of the cumulative kinetic pressure at the center
of the silo r = 0 and as a function of z/2rb. The fields are deduced using
a Gaussian coarse-graining function φ(R) and w = rb/2

the particle mass, but there are no evidences supporting this
hypothesis. Nevertheless, Fig. 11b illustrates that above a
given height, the partial kinetic stresses of all the components
equal to the same value and they decay exponentially with
the distance to the orifice. As we mention before, this finite
system size effect is related with the width of the silo Rc.
The results presented in Fig. 11b suggest that above certain
height, hm , we obtain a well-defined mass flow. This result is
practically independent of the aperture size R. Furthermore,
in that region all the particles types follow the global flow,
and the values of kinetic stress are practically equivalent.

In Fig. 12, we illustrate how the partial kinetic stress com-
pares the volume fraction of each component of the mixture
ϕk . As the segregation effects are very low, the values of ϕk

result proportional to the cube of the particle radio ϕk ∝ r3k ;
consequently, the partial volume fraction occupied by the
small particles is significantly lower than the large particles.
The data of the partial kinetic pressure at the center of the
silo r = 0, normalized with ϕk indicate that the small parti-
cles carry a higher fraction of kinetic stress respect to their
concentration. These findings suggest that the small particles
have larger velocity fluctuations than the large ones, which
is consistent with previous experimental reports [32].

Summarizing, we perform large-scale DEM simulation of
polydisperse granular flows in 3D silos, examining the para-
doxical ideas associated with the free-fall arch concept. Our
outcomes provide evidences that the self-similarity proper-
ties found in monodisperse spherical beads are also present
when low polydispersity is taken into account. Moreover, we
also found that in the range of study apertures, the size of the
aperture R is the relevant scale quantifying the volumetric
flow rate in silos. Additionally, we confirm that a non-trivial
process occurs in a singular region above the outlet, andmore
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Fig. 11 In a, the vertical profiles of the partial kinetic pressure at the
center of the silo r = 0 and as a function of z/2rb are illustrated. The
fields are deduced using a Gaussian coarse-graining function φ(R) and
w = rb/2. In b it is shown the same in semi-log scale, the colors are
changed to enhance the details

importantly, this process determines the spatial velocity pro-
file at the silo orifice. The stress decomposition into contact
and kinetic parts provides a suitable theoretical framework
to distinguish between the role of force chains and veloc-
ity fluctuations. Thus, we obtain that the contact pressure
is several orders of magnitude higher than the kinetic pres-
sure and it monotonically decreases as one approaches the
exit. Hence, discontinuities in the stress field are not found.
This picture contrasts with the traditional view of a free-fall
arch where assuming a stress discontinuity is the key fac-
tor when explaining the characteristic velocity at the outlet.
Moreover, even though the values of kinetic stress are much
smaller than the contact stress, the scaling of its spatial profile
with R reveals its relevance explaining the discharge process.
The general trend of the partial kinetic pressure profiles is
very similar for all types of particles. Although we obtain
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Fig. 12 The vertical profiles of the partial kinetic pressure at the center
of the silo r = 0, normalized with the volume fraction of each particle
type ϕi , and as a function of z/2rb are illustrated. The fields are deduced
using a Gaussian coarse-graining function φ(R) and w = rb/2

that the partial kinetic stress is larger for bigger particles, the
small particles carry a higher fraction of kinetic stress respect
to their concentration. Those findings suggest that the small
particles have larger velocity fluctuations than the large ones,
showing their lower strength of correlation with the global
flow. Our results show that the coarse-graining methodology
[14–17,38] is very a valuable tool, linking the microscopic
details of granular media and its macroscopic behavior of
polydisperse granular flows.
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Appendix: Discrete element modeling implementa-
tion (DEM)

The DEM implementation is a polydisperse generaliza-
tion of a monodisperse hybrid CPU/GPU algorithm that
allows us to efficiently evaluate the dynamics of several
hundred thousand particles [37,41]. For each particle i =
1 . . . N , the DEM simulation includes three translational
degrees of freedom and the rotational movement is described
by a quaternion formalism. We have used a linear spring
approach; thus, the normal interaction force Fn

i j between the
particles i with radius ri and j with radius r j depends lin-
early on the particles’ overlap distance δ = ri +r j −‖�Ri j‖,

where ‖�Ri j‖ is the relative distance between the particles.
Moreover, the local dissipation is introduced by a non-linear
viscous damping term, which depends on the normal relative
velocity vnrel . Hence, the total normal force reads as

Fn
i j = −kn δ n̂ − γnmef f vnrel , (9)

where

kn = 16.0

15.0

√
Ref f Y

(
15mef f V 2

c

16
√
Ref f Y

)1/5

(10)

and

γn =
√√√√

4mef f kn

1 +
(

π
ln(en)

)2 (11)

represent the damping coefficient,mef f = mim j/(mi+m j ),
Ref f = rir j/(ri + r j ), and Y is the particles Young’s mod-
ulus. The tangential component Ft

i j also includes an elastic
term and a viscous term,

Ft
i j = −ktξ − γtmef f vtrel , (12)

where γt is a damping coefficient and vtrel is the tangen-
tial relative velocity of the overlapping pair. The variable |ξ |
represents the elongation of an imaginary spring with elas-
tic constant kt . As long as there is an overlap between the
interacting particles, ξ increases as dξ/dt = vtrel [13]. The
elastic tangential elongation ξ is kept orthogonal to the nor-
mal vector [15] and it is truncated as necessary to satisfy
the Coulomb constraint |Ft

i j | < μ|Fn
i j |, where μ is the fric-

tion coefficient. The equations of motion are integrated using
Fincham’s leap-frog algorithm (rotational) [42] and a Verlet
Velocity algorithm (translational) [43].

In all the simulations reported here, the used contact
parameters correspond to particles with a Young’s modulus
Y = 120GPa, normal restitution coefficient en = 0.88, den-
sity ρp = 7520 kg/m3, and friction μ = 0.5. We set kt

kn
= 2

7

and γt
γn

= 0.1, and gravitational acceleration g = 10 m/s2.
In all cases, the molecular dynamics time step was set as
�t = tc

50 = 6.3×10−7 s, where tc is approximately equal to

time of contact between two small particles tc = π

√
mef f
2kn

.
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