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This paper deals with the splitting of extensions of topological abelian groups. 
Given topological abelian groups G and H, we say that Ext(G, H) is trivial if every 
extension of topological abelian groups of the form 1 → H → X → G → 1 splits. 
We prove that Ext(A(Y ), K) is trivial for any free abelian topological group A(Y )
over a zero-dimensional kω-space Y and every compact abelian group K. Moreover 
we show that if K is a compact subgroup of a topological abelian group X such 
that the quotient group X/K is a zero-dimensional kω-space, then there exists a 
continuous cross section from X/K to X. In the second part of the article we prove 
that Ext(G, H) is trivial whenever G is a product of locally precompact abelian 
groups and H has the form Tα × Rβ for arbitrary cardinal numbers α and β. An 
analogous result is true if G =

∏
i∈I Gi where each Gi is a dense subgroup of a 

maximally almost periodic, Čech-complete group for which both Ext(Gi, R) and 
Ext(Gi, T) are trivial.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the splitting of extensions of topological abelian groups. An extension of 
topological abelian groups is a short exact sequence 1 → H → X → G → 1, where H, X, G are topological 
abelian groups and all maps in the sequence are assumed to be continuous and open homomorphisms when 
considered as maps onto their images. Throughout this paper we will refer to it simply as “an extension”. 
The extension splits if it is equivalent to 1 → H → H×G → G → 1 in the natural sense; this means that H
splits as a subgroup of X. The splitting problem can be formulated as the problem of finding conditions on 
H and G under which all such extensions split. If this property holds we will say that Ext(G, H) is trivial, 
where Ext(G, H) stands for the set of equivalence classes of extensions of the form 1 → H → X → G → 1.
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Moskowitz [14] studied this problem in the realm of locally compact abelian groups (from now on LCA 
groups). He proved that if G is a LCA group and H ∼= T

α × R
n, for some non-negative integer n and an 

arbitrary cardinal α, then Ext(G, H) is trivial. Later on Fulp and Griffith established that a LCA group 
H has the property that Ext(G, H) is trivial for all connected LCA groups G if and only if H ∼= T

α × R
n

(Theorem 3.3 in [13]).
Some particular extensions of not necessarily locally compact topological abelian groups were studied 

by Cabello in [7]. He introduced the concept of a quasi-homomorphism in the category of topological 
groups. He found that every quasi-homomorphism q : G → H induces an extension which he denotes by 
1 → H → H ⊕q G → G → 1, and that every extension of this form splits provided that H is R or 
T and G is a product of locally compact abelian groups. The notion of quasi-homomorphism is based 
on that of quasi-linear map which was studied by Domański [10] in the framework of topological vector 
spaces.

Topological vector spaces, when considered in their additive structure, constitute an important class of 
topological abelian groups for which this theory is fairly well understood, at least in some concrete cases. 
Namely, there are well-known necessary and sufficient conditions on the spaces E and F under which every 
extension of Fréchet spaces 0 → F → L → E → 0 splits [5,17]. These results have many applications, for 
instance to problems concerning partial differential or convolution operators.

The paper is organized as follows. We prove in Section 2 that Ext(G, K) is trivial whenever K is a 
compact abelian group and G is the free abelian topological group over a zero-dimensional kω-space. As a 
by-product we obtain the following result, which is interesting in itself: If K is a compact subgroup of a 
topological abelian group X such that the quotient group X/K is a zero-dimensional kω-space, then there 
exists a continuous cross section from X/K to X.

The main result of Section 3 is Theorem 3.13 which states that Ext(G, H) is trivial whenever H = T
α×R

β

with α and β arbitrary cardinal numbers and G =
∏

i∈I Gi where each Gi is a dense subgroup of a maximally 
almost periodic, Čech-complete group for which both Ext(Gi, R) and Ext(Gi, T) are trivial. An important 
ingredient in the proof of this result is Theorem 3.5, which establishes that Ext(G, M) is trivial whenever 
G is any topological abelian group, M is metrizable and locally compact, and Ext(G/P, M) is trivial for 
each P in a cofinal family of admissible subgroups of G.

1.1. Notation, terminology, and preliminary facts

As usual, ω is the set of natural numbers, R is the set of real numbers, and C is the set of complex 
numbers. The unit circle of C with the topology inherited from C is denoted by T.

We are mainly interested in abelian groups, although some of our results are valid in a more general 
setting. If H is a closed subgroup of a topological group G, then G/H is the space of left cosets of H with 
the quotient topology. This is of course a topological group when H is a normal subgroup of G.

We use multiplicative notation for the group operation. Accordingly, we denote the neutral element of a 
group G by 1G or simply by 1 if there is no risk of confusion. Given a topological group G, we will denote 
by N1(G) the family of all neighborhoods of 1 in G.

A topological abelian group G is said to be a MAP (maximally almost periodic) group if the continuous 
homomorphisms of G to T separate points of G.

A topological space X is a kω-space if it has the weak topology with respect to an increasing sequence 
of compact subsets whose union is X.

By the character (resp. pseudocharacter) of a point x in a topological space X we mean the minimum 
cardinality of a basis of neighborhoods of x in X (resp. of a family of open neighborhoods of x whose 
intersection is {x}). Every point of a topological group G has the same (pseudo)character and we refer to 
it simply as the (pseudo)character of G.
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A topological space X is said to be almost metrizable if every x ∈ X is contained in a compact subset 
which has countable character in X. A topological group G is almost metrizable if and only if it contains 
a compact subgroup K such that the quotient space G/K is metrizable. The classes of Čech-complete 
topological groups and of almost metrizable, Răıkov complete groups coincide (for more details see [2, 
Section 4.3], where almost metrizable groups are called feathered).

The Răıkov completion of a Hausdorff topological group G is denoted by �G. For any continuous ho-
momorphism f : G → H of Hausdorff topological groups, there is a unique continuous homomorphism 
�f : �G → �H extending f ; if in addition f is a topological isomorphism then so is �f .

Following [16, 2.19] we will say that a subgroup N of a topological group G is admissible if there exists a 
sequence {Un : n ∈ ω} of open symmetric neighborhoods of the neutral element 1 in G such that U3

n+1 ⊆ Un, 
for each n ∈ ω, and N =

⋂
n∈ω Un. It is easy to see that every admissible subgroup is closed and that every 

neighborhood of 1G contains an admissible subgroup of G.
Recall that for a completely regular Hausdorff space X, the free abelian topological group over X is 

the free abelian group A(X) endowed with the unique Hausdorff group topology for which the mapping 
η : X → A(X), which maps the topological space X onto a basis of A(X), becomes a topological embedding 
and such that for every continuous mapping f : X → G, where G is an Abelian Hausdorff group, the unique 
group homomorphism f̃ : A(X) → G which satisfies f = f̃ ◦ η, is continuous.

A short exact sequence E : 1 → H
ı→ X

π→ G → 1 of topological abelian groups will be called an 
extension of topological groups if both ı and π are continuous and open homomorphisms when considered 
as maps onto their images.

The following lemma is a standard result; the details can be found for instance in [12, Sect. 50] (for the 
algebraic part) or [8, Lemma 3.2].

Lemma 1.1. Let 1 → H
ı→ X

π→ G → 1 be an extension of topological abelian groups, Y a topological abelian 
group, and t : H → Y a continuous homomorphism. There exists a diagram of the form

1 H
ı

t

X
π

s

G 1

1 Y
r PO

p
G 1

where PO, r and s form the push-out of ı and t in the category of topological abelian groups, and the bottom 
sequence is an extension of topological groups.

We say that an extension E : 1 → H
ı→ X

π→ G → 1 splits if there exists a continuous homomorphism 
T : X → H ×G making the following diagram commutative (here ıH and πG are the canonical mappings).

X

T

π

1 H

ı

ıH

G 1

H ×G

πG

It is known that if such a T exists, it must actually be a topological isomorphism. In other words, E splits if 
and only if it is equivalent to the trivial extension E0 : 1 → H

ıH→ H ×G 
πG→ G → 1. Note that the extension 

E splits if and only if ı(H) splits as a subgroup of X.
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If G and H are topological abelian groups, we will express the fact that every extension of the form 
1 → H → X → G → 1 splits by saying that Ext(G, H) is trivial. This notation is of course borrowed from 
the algebraic counterpart of this theory.

The following characterization is essential when dealing with extensions of topological abelian groups 
(see [8, Lemma 3.1]):

Theorem 1.2. Let E : 1 → H
ı→ X

π→ G → 1 be an extension of topological abelian groups. The following 
are equivalent:

(1) E splits.
(2) There exists a right inverse for π, i.e. a continuous homomorphism S : G → X with π ◦ S = IdG.
(3) There exists a left inverse for ı, i.e. a continuous homomorphism P : X → H with P ◦ ı = IdH .

If G and H are topological abelian groups we say that a map q : G → H is a quasi-homomorphism if 
q(1G) = 1H and the corresponding map Δq : G × G → H defined by Δq(x, y) = q(xy)q(x)−1q(y)−1 is 
continuous at the identity of G × G. A quasi-homomorphism q : G → H is approximable if there exists a 
homomorphism h : G → H such that the map x �→ q(x)h(x)−1 is continuous at 1G.

This is a generalization of the concept of (approximable) quasi-linear maps between topological linear 
spaces [10]. The notion of a quasi-homomorphism was first considered in the present form by Cabello in [7], 
where he established the following connection between quasi-homomorphisms and extensions:

Proposition 1.3. (See [7, Lemmas 2, 3, 10].) Let G and H be topological abelian groups.

(1) If q : G → H is a quasi-homomorphism, then the sets

W (V,U) = {(h, g) ∈ H ×G : g ∈ U, h ∈ q(g) · V },

with U ∈ N1(G) and V ∈ N1(H), form a basis of neighborhoods at the identity element for a topological 
group topology τq on H ×G.
If H ⊕q G denotes the group H × G endowed with the topology τq and ıH and πG are the canonical 
inclusion and projection, respectively, then 1 → H

ıH→ H ⊕q G 
πG→ G → 1 is an extension of topological 

abelian groups.
(2) An extension of topological abelian groups 1 → H

ı→ X
π→ G → 1 is equivalent to one induced by a 

quasi-homomorphism in the sense of (1) if and only if it splits algebraically and there exists a map 
ρ : G → X such that π ◦ ρ = IdG, ρ(1) = 1, and ρ is continuous at the identity.

(3) A quasi-homomorphism q : G → H is approximable if and only if the corresponding induced topological 
extension defined in (1) splits.

Proposition 1.4. Let G be a metrizable topological abelian group and M a metrizable, divisible topological 
abelian group.

(1) Every extension 1 → M
ı→ X

π→ G → 1 is equivalent to one induced by a quasi-homomorphism in the 
sense of Proposition 1.3.

(2) Ext(G, M) is trivial if and only if every quasi-homomorphism q : G → M is approximable.

Proof. The first part is Corollary 32(1) in [4]. The second part is a consequence of the first one and 
Proposition 1.3(3). �
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Lemma 1.5. Let G and M be topological abelian groups. Let also H be a closed subgroup of G such that every 
continuous homomorphism of H to M extends to a continuous homomorphism of G to M . If Ext(G, M) is 
trivial then Ext(G/H, M) is trivial as well.

Proof. This result for M = T is Theorem 21(2) in [4]. The same proof, with the obvious replacements, 
works in the general case. �
Proposition 1.6. Let G be a locally compact abelian group and let M be either R or T. Then Ext(G, M) is 
trivial.

Proof. Observe that local compactness is a three-space property and that both R and T are universally 
splitting in the class of locally compact abelian groups [3, Theorem 6.16]. �

For the following result see Lemmas 4 and 6 in [7].

Lemma 1.7. Let G be a topological abelian group and M = R (resp., M = T). Let W = [−1/3, 1/3]
(resp., W = {exp(πix) : x ∈ [−1/6, 1/6]}). If q : G → M is a map such that q(xy)q(x)−1q(y)−1 ∈ W for 
every x, y ∈ G, then there exists a homomorphism h : G → M such that q(x)h(x)−1 ∈ W for every x ∈ G.

Proposition 1.8. Let M be either R or T. Let (Gi)i∈I be a family of topological abelian groups such that for 
every i ∈ I, every quasi-homomorphism of Gi to M is approximable. Then every quasi-homomorphism of ∏

i∈I Gi to M is approximable.

Proof. We start with the case of a two-element index set I. Let G and H be topological abelian groups with 
the property specified in the proposition and fix a quasi-homomorphism q : G ×H → M . This means that 
the map Δq : G ×H ×G ×H → M defined by Δq(g, h, g′, h′) = q(gg′, hh′)q(g, h)−1q(g′, h′)−1 is continuous 
at the identity. Making use of Δq(·, 1H , ·, 1H) we deduce that q(·, 1H) is a quasi-homomorphism. Similarly, 
q(1G, ·) is a quasi-homomorphism. By hypothesis, there exist continuous homomorphisms f1 : G → M and 
f2 : H → M such that both q(·, 1H)f1(·)−1 and q(1G, ·)f2(·)−1 are continuous at the identity. Consider the 
homomorphism of G ×H to M defined by (g, h) �→ f1(g)f2(h). We have

q(g, h)f1(g)−1f2(h)−1 =
(
q(g, h)q(g, 1H)−1q(1G, h)−1) · (q(g, 1H)f1(g)−1) · (q(1G, h)f2(h)−1)

and then we use Δq(·, 1H , 1G, ·) to obtain that the first factor is also jointly continuous at the identity.
The proof for a finite index set I is an easy induction, while the proof for an arbitrary set I is similar to 

the last step in the proof of [7, Theorem 1].
Indeed, let q :

∏
i∈I Gi → M be a quasi-homomorphism and let W0 be the neighborhood {z ∈ T : Re(z) ≥

0} (in the case M = T) or [−1, 1] (in the case M = R). Let W be as in Lemma 1.7. Find a finite subset 
J0 ⊆ I and neighborhoods Ui, for each i ∈ J0, of the identity element such that q(xy)q(x)−1q(y)−1 ∈ W

whenever x, y ∈
∏

i∈J0
Ui×

∏
i∈I\J0

Gi. Put J = I \J0 and write 
∏

i∈I Gi as G1×G2, where G1 =
∏

i∈J0
Gi

and G2 =
∏

i∈J Gi. By the previous step, there exists a homomorphism f1 : G1 → M and Vi ∈ N1(Gi)
for each i ∈ J0 such that q(g, 1)f1(g)−1 ∈ W whenever g ∈

∏
i∈J0

Vi. We may assume that Vi ⊆ Ui. 
Further, Lemma 1.7 implies that there is a continuous homomorphism f2 : G2 → M such that the image 
of q(1, ·)f2(·)−1 is contained in W . There exist neighborhoods O1 and O2 of the identities in G1 and G2, 
resp., such that for every g ∈ O1 and h ∈ O2, we can express q(g, h)f1(g)−1f2(h)−1 as the product of three 
elements in W , and so q(g, h)f1(g)−1f2(h)−1 belongs to W0. It only remains to apply [7, Lemma 5] for M = R

(or [4, Lemma 36] for M = T) to deduce that the quasi-homomorphism (g, h) �→ q(g, h)f1(g)−1f2(h)−1 is 
continuous at the identity. This completes the proof. �
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2. Free topological groups and splittings

In this section we show that Ext(A(Y ), K) is trivial for every compact abelian group K and every free 
abelian topological group A(Y ) on a zero-dimensional kω-space Y .

Definition 2.1. Let p : G → H be a continuous homomorphism of topological groups. We say that p is a 
projection along a metrizable factor if G admits an isomorphic topological embedding j into the product 
H ×M , where M is a metrizable topological group, such that the following diagram commutes.

G
j

p

H ×M

pH

H

Here pH stands for the projection of H ×M onto the first factor.

Lemma 2.2. If N is an admissible subgroup of a topological (not necessarily abelian) group X, then the 
quotient space X/N has countable pseudocharacter.

Proof. There exists a sequence {Un : n ∈ ω} of open symmetric neighborhoods of the identity element 1 in 
X such that U3

n+1 ⊆ Un for each n ∈ ω and N =
⋂

n∈ω Un. Let π : X → X/N be the quotient map onto the 
left coset space X/N . Then π−1π(Un+1) = Un+1N ⊆ U2

n+1 ⊆ Un, for each n ∈ ω. Therefore,

π−1

(⋂
n∈ω

π(Un+1)
)

⊆
⋂
n∈ω

Un = N,

i.e. the set 
⋂

n∈ω π(Un+1) contains only the element π(1). Since the space X/N is homogeneous, we conclude 
that it has countable pseudocharacter. �

The next two results apply in the proof of Lemma 2.5. The first of them guarantees the existence of a 
coarser metrizable topological group topology on certain topological abelian groups, while the second is a 
consequence of Michael’s Selection Theorem.

Lemma 2.3. (See [2, Corollary 3.4.26].) Suppose that G is a topological abelian group of countable pseu-
docharacter. Then G admits a coarser metrizable topological group topology.

Lemma 2.4. (See [2, Lemma 4.1.4(b)].) Let Z be a topological space, M a metrizable compact space, X
a closed subspace of Z × M , and p : X → Z the restriction to X of the projection of Z × M to the first 
factor. Assume that p is open and onto. Further, let f be a continuous map of a zero-dimensional compact 
Hausdorff space Y onto Z, A a closed subset of Y and h a continuous map of A to X such that p ◦h = f�A. 
Then there exists a continuous map h : Y → X with h�A = h and such that p ◦ h = f .

Y
f

h

Z

A
h

X

p
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The second part of the following lemma will be generalized in Theorem 2.8 where we drop the metrizability 
restriction on the group K.

Lemma 2.5. Let K be a compact metrizable subgroup of a topological abelian group X and p : X → X/K the 
quotient homomorphism. Then p is a projection along a metrizable factor. Furthermore, if a zero-dimensional 
subspace Y of X/K is a kω-space, then there exists a continuous map s : Y → X satisfying p ◦ s = IdY .

Proof. Our argument imitates the one in [2, Section 4.1]. Since the group K is metrizable, it has a countable 
local base at the identity element, say, {Vn : n ∈ ω}. Then there exists a sequence {Un : n ∈ ω} of open 
symmetric neighborhoods of the neutral element 1 in X such that U3

n+1 ⊆ Un and Un ∩K ⊆ Vn, for each 
n ∈ ω. Clearly N =

⋂
n∈ω Un is an admissible subgroup of X and N ∩K =

⋂
n∈ω Un ∩K ⊆

⋂
n∈ω Vn = {1}. 

By Lemma 2.2, the quotient group X/N has countable pseudocharacter. Therefore, by Lemma 2.3, it admits 
a coarser metrizable topological group topology T. We denote the topological group (X/N, T) by M . Clearly, 
the coset map π : X → M , π(x) = xN , is continuous.

Since K is compact, the quotient map p : X → X/K is perfect. Put G = X/K and denote by j the diag-
onal product of the homomorphisms p and π. Then j is a perfect homomorphism of X to the product group 
G ×M since the diagonal product of a perfect map and a continuous map is perfect [11, Theorem 3.7.11]. 
It is easy to see that j is injective. Indeed, take an arbitrary element x ∈ X distinct from 1. If x /∈ K, then 
p(x) �= 1 and hence j(x) �= 1. If x ∈ K, then x /∈ N , whence it follows that π(x) �= 1 and j(x) �= 1. Thus j is 
a perfect one-to-one homomorphism of X onto j(X), and so j is a topological isomorphism of X onto the 
subgroup j(X) of G ×M . We denote by pG and pM the projections of G ×M onto G and M , respectively. 
The following diagram commutes.

X
p

π
j

G

M G×M
pM

pG

Since p = pG ◦ j, we see that p is a projection along the metrizable factor M .
As Y is a kω-space, we can represent it as the direct limit of an increasing sequence {Yn : n ∈ ω}

of compact subspaces. We construct the required map s : Y → X by induction. Clearly Y0 is a compact 
zero-dimensional subspace of Y . Since p is perfect, X0 = p−1(Y0) is a compact subspace of X and K0 =
pM (j(X0)) is a compact subspace of M . Thus j(X0) is a compact subspace of Y0 × K0, where K0 is a 
compact metrizable space.

The restriction of p to X0 is a continuous open map of X0 onto Y0 and, therefore, the restriction of pG
to j(X0) is a continuous open map of j(X0) onto Y0. We obtain the following commutative diagram

X0

j�X0

p�X0
Y0

j(X0)

pG�j(X0)

(1)

By Lemma 2.4 (with A = ∅, Y = Z = Y0, f = IdY0 and p = pG�j(X0)), there exists a continuous map 
t0 : Y1 → j(X0) such that pG ◦ t0 = IdY0 . Then by the commutativity of (1), s0 = j−1 ◦ t0 is a continuous 
map of Y0 to X0 satisfying p ◦ s0 = IdY0 .

Suppose that for some n ∈ ω, we have defined a continuous map sn : Yn → Xn = p−1(Yn) satisfying 
p ◦ sn = IdYn

. Then tn = j ◦ sn is a continuous map of Yn to j(Xn). The map tn satisfies pG ◦ tn =
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p�Xn
◦ sn = IdYn

. Note that Xn+1 = p−1(Yn+1) and j(Xn+1) are compact subspaces of X and G × M , 
respectively. Hence Kn+1 = pM (j(Xn+1)) is a compact subspace of M and j(Xn+1) ⊆ Yn+1 × Kn+1. We 
obtain the following commutative diagram

Yn+1
IdYn+1

Yn+1

Yn

tn
j(Xn+1)

pG�j(Xn+1)

By Lemma 2.4 (with A = Yn and h = tn), there exists a continuous map tn+1 of Yn+1 to j(Xn+1) which 
extends tn and satisfies pG ◦ tn+1 = IdYn+1 . Then the continuous map sn+1 = j−1 ◦ tn+1 of Yn+1 to Xn+1
extends sn and satisfies p ◦ sn+1 = IdYn+1 . This finishes our construction.

Let s be the map of Y to X which coincides with sn on Yn for each n ∈ ω. Our choice of the representation 
Y =

⋃
n∈ω Yn implies that s is continuous. It is also clear from the construction that p ◦ s = IdY , and the 

proof is complete. �
In the rest of the section we use the language of spectral representations and inverse systems. Let us 

recall the definition of spectral representations.
Let X be a space, κ a cardinal number, and let pα be a quotient map of X onto a space Xα, for each 

α < κ, such that the following two conditions are satisfied:

(S1) If x, y ∈ X, α, β ∈ κ and α < β, then pβ(x) = pβ(y) implies pα(x) = pα(y);
(S2) If x, y ∈ X are distinct, then pα(x) �= pα(y), for some α ∈ κ.

Then we will say that P = {pα : α < κ} is a spectral representation of the space X.
The next proposition that will be used in the proof of Theorem 2.8 is a well-known result, which appears 

in [1]. We present its proof here because [1] is not available in English.

Proposition 2.6. (See [1, Addendum to Chapter 1].) Let κ be a cardinal number and {pα : α < κ} a spectral 
representation of a space X. For α, β < κ with α < β, let pβ,α = pα ◦ p−1

β : pβ(X) → pα(X). If the 
projection p0 is a perfect map, then X is naturally homeomorphic to the limit space of the inverse system 
{Xα, pβ,α : α < β < κ}, where Xα = pα(X) for each α < κ.

Proof. Denote by p the diagonal product of the family {pα : α < κ}. Since p0 is perfect, the map p is perfect 
by [11, Theorem 3.7.11]. Hence the image Y = p(X) is a closed subspace of the product Π =

∏
α<κ Xα, 

where Xα = pα(X) for each α < κ. It also follows from condition (S2) that p is one-to-one. As p is perfect 
and one-to-one, it is a homeomorphism of X onto Y . For every α < κ, let πα : Π → Xα be the projection. 
The limit space of the inverse system {Xα, pβ,α : α < β < κ}, say, L is the subspace of Π which consists 
of all x ∈ Π such that pβ,α(πβ(x)) = pα(x) whenever α < β < κ. It is clear that Y ⊆ L. According to [9, 
Corollary 1.2.5], Y is a dense subspace of L. Since Y is closed in Π, we see that Y = L, i.e. p : X → L is a 
homeomorphism. �
Definition 2.7. Let X be a topological group, H a closed subgroup of X and p : X → X/H be the quotient 
map. A continuous cross section from X/H to X is a continuous map s : X/H → X such that p ◦s = IdX/K .

Theorem 2.8. Let K be a compact subgroup of a topological abelian group X and p : X → X/K the quotient 
homomorphism. If a zero-dimensional subspace Y of X/K is a kω-space, then there exists a continuous 
map s : Y → X satisfying p ◦ s = IdY . In particular, if X/K is a zero-dimensional kω-space, there exists a 
continuous cross section from X/K to X.
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Proof. Since K is compact, the homomorphism p is perfect [2, Theorem 1.5.7]. Let τ be the character of X, 
i.e. the minimum cardinality of a local base at the identity element of X. Choose a family {Nα : α < τ} of 
admissible subgroups of X such that

(∗) every neighborhood of the neutral element 1 in X contains Nα, for some α < τ .

For every α < τ , we denote by ϕα the quotient homomorphism of X onto X/Nα.
Put π0 = p, and if 0 < α < τ , denote by πα the diagonal product of p and φα, where φα is in turn the 

diagonal product of the homomorphisms ϕβ with β < α. Then πα is a continuous homomorphism of X to 
the product group X/K ×

(∏
β<α X/Nβ

)
.

It follows from [11, Theorem 3.7.11] that πα is a perfect homomorphism of X onto the subgroup Xα =
πα(X) of X/K × φα(X). It follows from (∗) that the homomorphisms ϕα with 0 < α < τ separate points 
of X. Hence the diagonal product of p and the family {ϕα : α < τ} is a topological isomorphism of X onto 
its image.

Given ordinals α, β with β < α < τ , we denote by πα,β the canonical homomorphism of Xα = πα(X)
onto Xβ = πβ(X) satisfying πβ = πα,β ◦ πα. Then P = {Xα, πα,β : β < α < τ} is an inverse system of 
topological abelian groups and {πα : α < τ} is a spectral representation of X. Since the homomorphisms 
πα are perfect, Proposition 2.6 implies that the group X is topologically isomorphic to the limit group of 
the inverse system P. Similarly, Xα is topologically isomorphic to the limit group of the inverse system 
{Xβ , πβ,γ : γ < β < α} for each limit ordinal α satisfying ω ≤ α < τ .

For each α < τ , denote by Kα the kernel of the homomorphism πα. Then Kα ⊆ K is a compact group and 
the kernel of the bonding homomorphism πα+1,α : Xα+1 → Xα is topologically isomorphic to the compact 
group Kα/Kα ∩ Nα. The quotient group Kα/(Kα ∩ Nα) is also metrizable because it is a compact space 
with countable pseudocharacter. Hence the homomorphism πα+1,α satisfies the hypothesis of Lemma 2.5.

We are going to define a system of continuous maps sα : Y → Xα satisfying the following condition for 
all α, β with 0 ≤ β < α < τ :

(∗∗) πα,β ◦ sα = sβ .

Let us start with letting s0 = IdY . Suppose that the system {sβ : β < α} satisfying (∗∗) is defined for 
some ordinal α with 0 < α < τ . If α is limit, then since Xα is isomorphic to the limit of the inverse system 
{Xβ , πβ,γ : γ < β < α}, there exists a unique continuous map sα : Y → Xα such that πα,β ◦sα = sβ for each 
β < α. Suppose now that α is a successor ordinal, say, α = ν +1. It follows from πν,0 ◦ sν = IdY that sν is a 
homeomorphism of Y onto a subspace of Xν . In particular, Yν = sν(Y ) is a zero-dimensional kω-subspace 
of Xν . By applying Lemma 2.5 to the open homomorphism πν+1,ν = πα,ν , we deduce that there exists a 
continuous map tν : Yν → Xα such that πα,ν ◦ tν = IdYν

. Let us put sα = tν ◦ sν . It is clear that the system 
{sβ : 0 ≤ β ≤ α} satisfies (∗∗). This finishes our recursive construction.

Since X is the inverse limit of the system P, it follows from (∗∗) that there exists a unique continuous 
map s : Y → X such that πα ◦ s = sα for each α < τ . In particular, p ◦ s = IdY . This completes the proof 
of the theorem. �

The main result of this section is the following theorem:

Theorem 2.9. Let K be a compact abelian group and A(Y ) the free abelian topological group on a zero-
dimensional kω-space Y . Then Ext(A(Y ), K) is trivial and every quasi-homomorphism ω : A(Y ) → K is 
approximable.

Proof. Let E : 1 → K
ı→ X

p→ A(Y ) → 1 be an extension of topological groups. By Theorem 2.8, there 
exists a continuous map s : Y → X satisfying p ◦ s = IdY . Since A(Y ) is the free abelian topological group 
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over Y , the map s extends to a continuous homomorphism S : A(Y ) → X and an easy verification shows 
that p ◦ S = IdA(Y ). Hence Theorem 1.2 implies that E splits, so every quasi-homomorphism of A(Y ) to K
is approximable by Proposition 1.3. �

Theorem 2.8 also implies the following result along the lines of Proposition 1.4:

Proposition 2.10. Let K be a divisible compact abelian group and G a topological abelian group which is 
a zero-dimensional kω-space. Every extension of topological abelian groups 1 → K

ı→ X
π→ G → 1 is 

equivalent to one induced by a quasi-homomorphism. Consequently Ext(G, K) is trivial if and only if every 
quasi-homomorphism q : G → K is approximable.

Proof. Fix such an extension E : 1 → K
ı→ X

π→ G → 1. Since K is divisible, E splits algebraically. By 
Theorem 2.8, there exists a continuous map s : G → X satisfying π ◦ s = IdG. But this continuous map can 
be chosen such that s(1) = 1, therefore by Proposition 1.3 (2) we obtain that E is equivalent to an extension 
of topological groups induced by a quasi-homomorphism. The second assertion follows from the first one 
and Proposition 1.3 (3). �
3. Products and splittings

Our aim in this section is to prove Theorem 3.13 which states the following: Let G =
∏

i∈I Gi be the 
product of a family of topological abelian groups, where each factor Gi is a dense subgroup of a MAP and 
Čech-complete group. If both Ext(Gi, R) and Ext(Gi, T) are trivial for each i ∈ I, then Ext(G, H) is trivial, 
where H is an arbitrary product of copies of R and T.

This theorem is the last one of this section and it can be regarded as the final step in a series of successively
more general results. We start by proving (Lemma 3.1) that Ext(G, H) is trivial whenever H is either R or 
T and G is a countable product of metrizable groups Gn such that Ext(Gn, H) is trivial for every n.

A second, more technical step is fulfilled in Theorem 3.5 where we give a sufficient condition for Ext(G, M)
to be trivial, where G is any topological abelian group and M is metrizable and locally compact.

The next important step is achieved by applying the sufficient condition just obtained to a product 
G =

∏
i∈I Gi of almost metrizable groups Gi (Theorem 3.8), thus showing that

(1) If Gi is a MAP group and Ext(Gi, T) is trivial for every i ∈ I, then Ext(G, T) is trivial.
(2) If Ext(Gi, R) is trivial for every i ∈ I, then Ext(G, R) is trivial.

This concludes the most intricate part of the argument. In the last part of this section we present several 
results which can be obtained in a standard way and allow us to complete the proof of Theorem 3.13.

Lemma 3.1. Let H be either R or T. If (Gn)n∈ω is a sequence of metrizable abelian groups such that 
Ext(Gn, H) is trivial for every n ∈ ω, then Ext(

∏
n∈ω Gn, H) is trivial.

Proof. Clearly the group G =
∏

n∈ω Gn is metrizable. By Proposition 1.4(2), it suffices to prove that every 
quasi-homomorphism ω : G → H is approximable. Taking into account Proposition 1.3(3), this follows from 
Proposition 1.8. �

The following important result was proved by Arhangel’skii [2, Theorem 3.2.2].

Proposition 3.2. Suppose that G is a topological (not necessarily abelian) group, H is a locally compact 
subgroup of G and π : G → G/H is the natural quotient map. There exists an open neighborhood U of the 
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identity element 1G in G such that π(U) is closed in G/H and the restriction of π to U is a perfect map of 
U onto the subspace π(U) of G/H.

The two lemmas that follow prepare the ground for the proof of Theorem 3.5.

Lemma 3.3. Let p : X → G be a quotient homomorphism of topological abelian groups, where kerp is a locally 
compact subgroup of X. There exists an admissible subgroup N0 of X such that for every closed subgroup 
N of X contained in N0, the image M = p(N) is closed in G and there exists a quotient homomorphism 
ϕN : X/N → G/M such that the diagram

X

πN

p
G

πM

X/N
ϕN

G/M

commutes and kerϕN = πN (ker p), where πN : X → X/N and πM : G → G/M are the quotient homomor-
phisms.

Proof. Since K = ker p is a locally compact subgroup of X, Proposition 3.2 implies that there exists a 
closed neighborhood W of the identity 1X in X such that p �W is a perfect map. We choose an admissible 
subgroup N0 of X with N0 ⊆ W .

Let N be a closed subgroup of X contained in N0. Since the map p �W is closed and N ⊆ N0 ⊆ W , 
we see that the subgroup M = p(N) is closed in G. Let f = πM ◦ p. Then f is a continuous homo-
morphism of X to G/M and ker f = p−1p(N) = NK. Since kerπN = N ⊆ NK = ker f , there exists 
a homomorphism ϕN : X/N → G/M satisfying ϕN ◦ πN = f . Notice that f is open as a composition 
of two open homomorphisms, so ϕN is continuous and open. Finally, it is clear that ϕN is onto and 
kerϕN = πN (NK) = πN (K). �
Lemma 3.4. Let p : X → G be a continuous open homomorphism of (not necessarily abelian) topological 
groups. If the kernel of p is locally compact, then

(1) There exists an admissible subgroup N0 of X such that p(N) is an admissible subgroup of G, for each 
admissible subgroup N of X contained in N0.

(2) Let L be a cofinal subfamily of the family of admissible subgroups of G ordered by inverse inclusion. For 
every admissible subgroup N of X, there exists an admissible N ′ ⊆ N with p(N ′) ∈ L.

Proof. We can assume that p(X) = G, otherwise we replace G with its open subgroup p(X).
(1) Since ker p is a locally compact subgroup of X, it follows from Proposition 3.2 that there exists an 

open neighborhood U0 of the identity 1X in X such that the restriction of p to U0 is a perfect map. Let 
{Un : n ∈ ω} be a sequence of open symmetric neighborhoods of 1 in X such that U3

n+1 ⊆ Un for each 
n ∈ ω. Then N0 =

⋂
n∈ω Un is the required admissible subgroup of X.

Indeed, let N be an arbitrary admissible subgroup of X contained in N0. Take a sequence {Vn : n ∈ ω}
of symmetric open neighborhoods of 1X in X such that V 3

n+1 ⊆ Vn for each n ∈ ω and N =
⋂

n∈ω Vn. The 
sets On = Vn ∩ Un, with n ∈ ω, are also symmetric neighborhoods of 1X which satisfy O3

n+1 ⊆ On and 
N = N0 ∩N =

⋂
n∈ω On. Then Wn = p(On) is an open symmetric neighborhood of the neutral element in 

G and W 3
n+1 ⊆ Wn, for each n ∈ ω. It is clear that P =

⋂
n∈ω Wn is an admissible subgroup of G. To finish 

the proof it suffices to verify that p(N) = P .
It follows from the choice of the sets On that On+1 ⊆ On, for each n ∈ ω. In particular N =

⋂
n∈ω On. 

Take any point y ∈ P . Then p−1(y) ∩On �= ∅ for each n ∈ ω. As O0 ⊆ U0 and the map p�U is perfect, the 

0
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set O0 ∩ p−1(y) is compact. It follows that ∅ �= p−1(y) ∩
⋂

n∈ω On = p−1(y) ∩N . This proves the equality 
p(N) = P .

(2) Fix an admissible subgroup N ⊆ X. Take an admissible subgroup N0 of X as in (1). Then p(N0 ∩N)
is an admissible subgroup of G. Since L is cofinal, there exists P ∈ L such that P ⊆ p(N0 ∩ N). Put 
N ′ = N0 ∩N ∩ p−1(P ). Then N ′ ⊆ N is an admissible subgroup of X and p(N ′) = p(N0 ∩N) ∩P = P . �
Theorem 3.5. Let M be a metrizable, locally compact abelian group. Let also G be a topological abelian 
group and L a cofinal subfamily of the family of admissible subgroups of G, ordered by inverse inclusion. If 
Ext(G/P, M) is trivial for each P ∈ L, then Ext(G, M) is trivial.

Proof. Suppose that E : 1 → M
ı→ X

π→ G → 1 is an extension of topological abelian groups. Since 
kerπ = ı(M) is locally compact, we can find an admissible subgroup N2 of X as in Lemma 3.3. Since ı(M)
is metrizable, there exists an admissible subgroup N1 of X such that N1 ∩ ı(M) = {1X} and N1 ⊆ N2. By 
Lemma 3.4(2), we can find an admissible subgroup N0 of X such that N0 ⊆ N1 and P = π(N0) ∈ L. Let 
the sequence {Un : n ∈ ω} of open symmetric neighborhoods of 1X in X witness the fact that N0 is an 
admissible subgroup of X. Clearly Un+1 ⊆ Un for each n ∈ ω. Since the group ı(M) is locally compact and 
N0 ∩ ı(M) ⊆ N1 ∩ ı(M) = {1X}, the family {Un ∩ ı(M) : n ∈ ω} forms a local base at the identity in ı(M)
(see [11, 3.1.5]).

Let p : X → X/N0 and f : G → G/P be the quotient homomorphisms. As N0 ⊆ N1 ⊆ N2, by Lemma 3.3
there exists a continuous open homomorphism ϕ of X/N0 onto G/P such that f ◦ π = ϕ ◦ p and kerϕ =
p(ı(M)). Consider the commutative diagram

E : 1 M
ı

q

X

p

π
G

f

1

E′ : 1 p(ı(M)) ı′

X/N1
ϕ

G/P 1

where ı′ is the canonical inclusion and q(x) = p(ı(x)) for every x ∈ M . The sequence E′ is also an extension 
of topological abelian groups. The inclusions q−1(p(ı(M)) ∩ p(Un+1)) ⊆ ı−1(Un), where n ∈ ω, are easy to 
check. Since the sequence {ı−1(Un) : n ∈ ω} is a local base at the identity of M , we conclude that q is 
one-to-one and open, hence a topological isomorphism.

By hypothesis the extension E′ splits. By Theorem 1.2, there exists a continuous homomorphism 
R : X/N1 → p(ı(M)) such that R ◦ ı′ = Idp(ı(M)). It is clear that the continuous homomorphism S : X → M

defined by S = q−1 ◦R ◦ p satisfies S ◦ ı = IdM . Hence the extension E splits. �
The next two lemmas will be used in the proof of Theorem 3.8.

Lemma 3.6. Let G be an almost metrizable topological abelian group. Every admissible subgroup N of G
contains an admissible, compact subgroup K such that G/K is metrizable.

Proof. Let N be an admissible subgroup of G and (Wn)n∈ω be a sequence of open, symmetric neighborhoods 
of the identity in G such that W 3

n+1 ⊆ Wn for each n and 
⋂

n∈ω Wn = N . Take a compact subgroup H of 
G of countable character in G; let (Un)n∈ω be a basis of open neighborhoods of H in G. Find a sequence 
(Vn)n∈ω of open symmetric neighborhoods of the identity in G such that V 3

n+1 ⊆ Vn ∩Un and Vn ⊆ Wn for 
every n ∈ ω. Put K =

⋂
n∈ω Vn. It is clear that K is admissible and K ⊆ N . By [2, Lemma 4.3.10], K is a 

compact subgroup of G and (Vn)n∈ω is a base for K in G. Hence the quotient group G/K is metrizable. �
Lemma 3.7. Let (Gi)i∈I be a family of almost metrizable abelian groups and G =

∏
i∈I Gi. Let L be the 

family of subgroups of G that have the form 
∏

Ni where
i∈I
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(1) Ni is either a compact, admissible subgroup of Gi or the whole Gi

(2) the quotients Gi/Ni are metrizable for every i
(3) Ni �= Gi for at most countably many i ∈ I.

Then L is a cofinal family of admissible subgroups of G.

Proof. It is clear that every N ∈ L is admissible. Conversely, let N be an admissible subgroup of G. It 
is easy to see that for each i ∈ I we can find a subgroup Ni of Gi such that either Ni = Gi or Ni is an 
admissible subgroup of Gi, the product 

∏
i∈I Ni is contained in N , and Ni = Gi for all but countably many 

i ∈ I. Now put N ′
i = Gi if Ni = Gi, and for those i with Ni �= Gi find (using Lemma 3.6) a subgroup 

N ′
i ⊆ Ni such that N ′

i is admissible, compact and Gi/N
′
i is metrizable. Then N ⊇

∏
i∈I N

′
i ∈ L. �

The following result is the key part of the proof of Theorem 3.13.

Theorem 3.8. Let (Gi)i∈I be a family of almost metrizable abelian groups and G =
∏

i∈I Gi.

(1) If Gi is a MAP group and Ext(Gi, T) is trivial for every i ∈ I, then Ext(G, T) is trivial.
(2) If Ext(Gi, R) is trivial for every i ∈ I, then Ext(G, R) is trivial.

Proof. Let M be either T or R. Consider the family L defined in Lemma 3.7. By Theorem 3.5, it suffices to 
prove that for each N ∈ L, every extension 1 → M → Y → G/N → 1 splits. If N ∈ L, then N =

∏
i∈I Ni, 

where Ni is either a compact, admissible subgroup of Gi or the whole Gi, the quotients Gi/Ni are metrizable 
for every i, and Ni �= Gi for at most countably many i ∈ I. Clearly G/N ∼=

∏
i∈I Gi/Ni. Note that because Ni

is compact every continuous homomorphism from Ni to M can be continuously extended to Gi (indeed, the 
case M = R is immediate and in the case M = T it is [6, Corollary 4]). Hence by Lemma 1.5, Ext(Gi/Ni, M)
is trivial for every i ∈ I. Therefore G/N is topologically isomorphic to a countable product of metrizable 
topological groups Gi/Ni such that Ext(Gi/Ni, M) is trivial. By Lemma 3.1, Ext(G/N, M) is trivial. �

Next we prove a few results concerning completions of extensions and extensions by products of topological 
abelian groups.

Proposition 3.9. Let G be a topological abelian group and H ⊆ G a closed subgroup of G. If the Răıkov 
completion of H is Čech-complete, then the canonical map φ : G/H → �G/�H is a dense embedding which 
extends to a topological isomorphism of �(G/H) onto �G/�H.

Proof. Let πH : G → G/H and π
H : �G → �G/�H be the canonical homomorphisms. Note that φ(πH(g)) =
π
H(g) for every g ∈ G. It is clear that φ is a continuous monomorphism. That φ(G/H) = π
H(G) is dense 
in �G/�H follows from the fact that G is dense in �G and π
H is a quotient map.

Let us see that φ is relatively open. Fix a closed neighborhood U of 1 in G. Let us show that for every 
symmetric neighborhood V of 1 in G with V V ⊆ U , we have φ(πH(U)) ⊃ φ(G/H) ∩π
H(V ) or, equivalently, 
π
H(U) ⊃ π
H(G) ∩ π
H(V ) where the closure is taken in �G. Fix z ∈ V and g ∈ G with zg−1 ∈ �H. Fix 
h ∈ H ∩ zg−1V . Then u = hg satisfies u ∈ V V ∩G ⊆ U ∩G = U and zu−1 ∈ �H.

The group �G/�H is complete by [15, 11.18]. Hence �φ : �(G/H) → �G/�H is a topological isomor-
phism. �
Proposition 3.10. Let E : 1 → H

ı→ X
π→ G → 1 be an extension of topological abelian groups. Suppose that 

the Răıkov completion of H is a Čech-complete group. Then the sequence �E : 1 → �H

ı→ �X


π→ �G → 1
is an extension of topological abelian groups.
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Proof. There exists a topological isomorphism α : G → X/ı(H) such that α ◦ π = πı(H), where πı(H) is the 
natural quotient map. Note that the completion �α : �G → �(X/ı(H)) of α is a topological isomorphism, 
too.

As a subgroup of �X, �(ı(H)) coincides with �ı(�H). Let ϕ : �(X/ı(H)) → �X/�ı(�H) be the topological 
isomorphism of Proposition 3.9. It is easy to check that the diagram

�E : 1 �H


̃ı


ı
�X


π
�G

ϕ◦
α

1

E′ : 1 �ı(�H) �X �X/�ı(�H) 1

commutes, where E′ is the canonical extension and �̃ı is the corestriction of �ı. Since the downward maps 
are topological isomorphisms and E′ is an extension of topological abelian groups, �E is an extension of 
topological abelian groups, too. �

A special case of Proposition 3.10 for a metrizable group H was proved in [18, Theorem 2].

Proposition 3.11. Let G be a topological abelian group and H a Čech-complete topological abelian group. If 
Ext(�G, H) is trivial, then Ext(G, H) is trivial as well.

Proof. Suppose that Ext(�G, H) is trivial and consider an extension E : 1 → H
ı→ X

π→ G → 1. By 
Proposition 3.10, �E : 1 → H


ı→ �X

π→ �G → 1 is an extension of topological abelian groups. By 

hypothesis, �E splits, so by Theorem 1.2 there exists a continuous homomorphism P : �X → H such that 
P ◦ �ı = IdH . The continuous homomorphism P |X : X → H satisfies P |X ◦ ı = IdH . Hence E splits. �
Proposition 3.12. Let G be a topological abelian group and {Hi : i ∈ I} a family of topological abelian groups. 
Then Ext(G, Hi) is trivial for every i ∈ I if and only if Ext(G, 

∏
i∈I Hi) is trivial.

Proof. For every j ∈ I, consider the projections pj :
∏

i∈I Hi → Hj and inclusions qj : Hj →
∏

i∈I Hi. 
Suppose that Ext(G, Hi) is trivial for every i ∈ I. Let 1 →

∏
i∈I Hi

ı→ X
π→ G → 1 be an extension of 

topological abelian groups. For every j ∈ I, using Lemma 1.1, we can construct a diagram in the following 
way

1
∏

i∈I Hi
ı

pj

X
π

sj

G 1

1 Hj

rj
POj

p
G 1

where POj , rj and sj form the push-out of ı and pj , and the bottom sequence is an extension of topological 
abelian groups. By hypothesis, there exists a continuous homomorphism tj : POj → Hj satisfying tj ◦ rj =
IdHj

. It is clear that the map x ∈ X �→ ((ti ◦ si)(x))i∈I ∈
∏

i∈I Hi is a left inverse for ı.
Suppose now that Ext(G, 

∏
i∈I Hi) is trivial. Fix j ∈ I and let 1 → Hj

ı′→ X
π′
→ G → 1 be an extension 

of topological abelian groups. Again by Lemma 1.1, we can consider a diagram

1 Hj
ı′

qj

X
π′

s

G 1

1
∏

i∈I Hi
r PO′

j

p′

G 1
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where PO′
j , r and s form the push-out of ı′ and qj and the bottom sequence is an extension of topological 

abelian groups. By hypothesis, there exists a continuous homomorphism t : PO′
j →

∏
i∈I Hi with t ◦ r =

Id∏
i∈I Hi

. It is clear that pj ◦ t ◦ s is a left inverse for ı′. �
Now we are ready to present the main result of this section.

Theorem 3.13. Let G =
∏

i∈I Gi be the product of a family of topological abelian groups such that each factor 
Gi is a dense subgroup of a MAP and Čech-complete group. Assume that both Ext(Gi, R) and Ext(Gi, T)
are trivial for each i ∈ I. If H is an arbitrary product of copies of R and T, then Ext(G, H) is trivial.

Proof. In view of Proposition 3.12, it suffices to show that Ext(G, M) is trivial when M is either R or T. 
Since Gi is a dense subgroup of a MAP and Čech-complete group Li, the group �G ∼=

∏
i∈I �Gi

∼=
∏

i∈I Li

is a product of Čech-complete groups. By Theorem 3.8, we have Ext(�G, M) is trivial. It now follows from 
Proposition 3.11 that Ext(G, M) is trivial. �

It is clear that locally precompact groups are dense subgroups of locally compact groups which are 
obviously MAP and Čech-complete. By Proposition 1.6, both Ext(L, T) and Ext(L, R) are trivial for each 
locally compact abelian group L. Hence the next corollary follows from Theorem 3.13.

Corollary 3.14. Let G =
∏

i∈I Gi be the product of a family of locally precompact abelian groups. If H is an 
arbitrary product of copies of R and T, then Ext(G, H) is trivial.

Our last result is a special case of Corollary 3.14 which generalizes Theorem 1(a) in [7].

Corollary 3.15. Let G =
∏

i∈I Gi be the product of a family of locally precompact abelian groups. If H is 
either R or T, then Ext(G, H) is trivial.
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