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1 Introduction

The presence of external effects and/or public goods in an economy makes market mech-

anisms unreliable for allocating resources efficiently. Inefficiency appears in the form of

unexploited gains that can be eliminated by side payments and rearrangements in the

distribution of goods. However, it is usually unclear which mechanism to use for imple-

menting the suggested improvements. In the present paper, I study situations in which

externalities and/or public goods exist and the members of the society hold important

private information related to the problem that is undisclosed to the others. I propose

a concrete mechanism for the family of problems and argue that with it, under some

conditions, efficiency as social goal can be achieved. Let us first see an example of the

type of situations that form this family.

Imagine that a noxious recycling center has to be built according to some political

plans. The feasibility studies have already identified two potential areas that are suitable

for hosting the site. The decision to be made by the government is to choose between

these two areas (projects) trying to take into account its implications on social welfare.

In particular, the government’s goal is to locate the recycling center where its aggregate

positive(/negative) impact is the highest(/lowest). Supposing that parties hold private

information (private valuations) on the effects of the recycling center, it is in the best

interest of the authority to find out as much as possible about individual private valua-

tions. In order to do so, it can force the affected parties to take part in a procedure or

mechanism that may make reduce the informational asymmetries.

As for the impact of the site on its surroundings, one can consider the following two

scenarios: In the first, the recycling center only affects people in its immediate area, i.e. in

the settlement that is located closest to it. This reduces the number of interested parties

in the problem to two (plus the central government whose unique objective is to reach a

socially efficient decision) and causes positive or negatives changes in the welfare of at most

two parties. In the second scenario, the recycling center not only affects the population

in its host town, but a larger set of people at the same time as it might influence social

welfare across state and country borders. Because of the different nature of the problem,

the cases in which there are two and more than two parties will be discussed separately.

Problems of the type described above have already been analyzed in the literature.

Under complete information, when parties have precise information on how the others

value the projects, the multibidding game proposed and studied by Pérez-Castrillo and

Wettstein (2002) can be used efficiently. Without formal definitions, in cases of choices

between two projects this mechanism operates as follows:

• Strategies: each participant (each of the affected parties) announces two bids, one
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for each of the available projects such that these bids sum up to zero.

• Outcomes: the planner sums the bids for every project and chooses the project with

the highest aggregate bid as the winner. In case of a tie, some device is used to

choose the winner among the projects with the highest aggregate bid. The winning

project is carried out, the bids related to it are paid and the surplus (the aggregated

bid) is shared among all the agents in equal parts.

Note that the mechanism has a unique (bidding) stage and each agent is asked to bid

for all the available projects. Besides each agent is forced to pay her bid given for the

project that has been chosen winner. Since the revenue raised by the bidding is given

back entirely to participants in equal shares, the multibidding game is budget-balanced.

In the complete-information setting, Pérez-Castrillo and Wettstein (2002) showed that in

every Nash equilibrium of the bidding, the winning project is efficient. Also any Nash

equilibrium of the multibidding mechanism is also a strong Nash equilibrium. For its

appealing properties under complete information, its simplicity and feasibility in a wide

range of problems, I propose the use of the multibidding mechanism under uncertainty,

i.e. incomplete information.

In this paper, I study how the multibidding mechanism performs when agents hold

private information and are uninformed about others’ preferences. I consider ex ante

identical risk neutral players and a continuum of possible private valuations; i.e. the

continuous case, and study the theoretical properties of the multibidding mechanism with

two alternatives. By its definition, the mechanism is safe both to run and to participate,

because it is budget-balanced and individually rational once supposed that agents can not

escape from the effects of the chosen public project.

In the multibidding game, bids must sum up to zero for every participant. This fea-

ture aims at extracting individual private information on the relative valuations between

the projects. The mechanism succeeds in it, as at the symmetric Bayes-Nash equilibria

participants’ bids depend on the difference between private valuations for the alternatives.

The equilibrium bidding function is strictly increasing and continuous. Its curvature is

determined by the underlying uncertainty that also involves the number of agents.

I show that under uncertainty the multibidding mechanism is always efficient in the

two-player, two-project case if the prior distributions are symmetric or players are antag-

onistically asymmetric.1 Efficiency is tied to additional conditions when there are more

players. The number of agents must be large or with a similar intuition behind uncertainty

must be large with zero expected value, in order to achieve efficient outcomes.

1Symmetry of distibution means symmetry of the density function around zero. Asymmetry of players

refers to situations in which players tend to prefer different projects and form prior beliefs in the opposite

way; i.e., player 1 is identical to player 2 with switched project labels.
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The two-player, two-project case has been widely analyzed in the auction literature.

McAfee (1992) studies simple mechanisms, explores their properties under uncertainty,

and presents results for an environment with constant absolute risk aversion. He finds

that the winner’s bid auction reaches (allocative) efficiency in the chosen set-up. As for

the multibidding mechanism, it is important to point out that private valuations are now

attached to projects as well as the object in question. This feature makes the model a

slightly more general even in the two-agent case. Normally, both parties are eager to win

the object and feel bad if it is their opponent who does so. Normalization of payoffs can

get us back to the situation studied in the auction literature where players receive zero

pay-off when not winning the auction. There also exist problems in which the object is bad

and both wish that the other one will get it. These situations can be efficiently dealt with

using, for example, a first-price sealed-bid auction with the proper definition for bids and

winner. However, one might imagine situations in which agents share the same opinion

and, for instance, both wish that agent 1 get the object. Under these circumstances, the

first-price sealed-bid auction is a feasible mechanism once we generalize it, allowing for

both negative and positive bids. The multibidding mechanism can also be used without

modification in this case.

An important part of the environments considered here has been studied in the litera-

ture that deals with the problem of siting noxious facilities. Several sealed-bid mechanisms

have been proposed for the problem. The first to suggest the use of an auction in this

situation were Kunreuther and Kleindorfer (1986). They showed that outcomes real-

ized by min-max strategies in a low-bid auction are efficient as long as the non-hosting

participants are indifferent between all outcomes. For the case of two cities, O’Sullivan

(1993) proved that symmetric Bayes-Nash equilibria of the modified low bid game yield

an efficient outcome when private valuations are independently drawn.2 He argues that

min-max strategies deliver problematic equilibria in which beliefs may be inconsistent.

The rationality of participation, however, is conditional on the compensation for the host

city.

Ingberman (1995) analyzed the siting problem with costs depending on the distance

from the noxious site and using a majority vote approach. He concluded that decisions

reached in this manner would be inefficient, as markets would produce an excessive number

of noxious facilities and place them in the wrong sites. Rob (1989) modelled the problem

between a pollution-generating firm and the residents as a mechanism design approach for

the siting problem. Notice that my model is different in that I assume that the planner is

uninterested in revenue-raising. In Rob (1989), binary decision must be made, accept or

2It is a voluntary auction under which the city submitting the low bid hosts the region’s noxious

facility and receives the high bid as compensation.
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reject the construction of a pollution-generating plant, and compensatory payments need

to be determined. The outcomes of the resulting mechanism are sometimes inefficient. In

contrast to the equilibrium outcomes of the multibidding mechanism inefficiencies become

rampant when there are many residents affected by pollution and the degree of uncertainty

is large.

Jehiel et al. (1996) analyzed a similar model in which external effects appear as the

value of a project to an agent depends on the identity of who carries it out. Their set-up

includes a seller who wants to sell an object to one of n agents and they characterize

the individually rational and incentive compatible mechanisms that maximize the seller’s

revenue. Revenue maximization is not in my interest in this paper and there are other

important assumptions that I do not make. For example, in Jehiel et al. (1996) agents

not only know their own valuation, but also the externality they impose on other players.

The well-known Vickrey-Clarke-Groves mechanisms are designed for similar problems,

to choose a public project to carry out, under uncertainty and for them truthtelling is

a dominant strategy. Therefore, these mechanisms result in efficient outcomes, however

they are not budget-balanced. The surplus generated by payments is a loss for the agents.

D’Aspremont and Gérard-Varet (1979) proposed a mechanism that works in a public

good set-up under uncertainty with independent types. That mechanism works similarly

to the Vickrey-Clarke-Groves schemes, but it substitutes dominant-strategy incentive-

compatibility with Bayesian incentive-compatibility. This helps to overcome budget-

balance problems and still ex post efficiency is guaranteed. However, a problem still

exists: voluntary participation or individual rationality cannot be reached with the pro-

posed mechanism in their set-up.3

The rest of this paper is organized as follows. The next section introduces the mech-

anism formally and starts studying its theoretical properties with symmetric underlying

distributions modelling uncertainty. The analysis is done separately in different sections

for the two-player and n-player case because of the differences in the techniques and re-

sults. I comment on the consequences of asymmetric distributions in Section 5, and relate

the multibidding game to a special problem that frequently arises in the literature: a

dissolving partnership. Section 6 concludes. Proofs are presented in the appendix.

2 Multibidding game under uncertainty

Consider a set of alternatives P = {1, 2} and a set of risk neutral agents N = {1, . . . , i, . . . , n}
whose utility depends on the alternative carried out. I shall denote by x

j
i ∈ X ⊂ R the

3A more detailed review on the topic including the Vickrey-Clarke-Groves mechanisms can be found

in Jackson (2001).
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utility that player i enjoys when project j is the winning project. These values are private

information and will be treated as random draws from some underlying common distribu-

tion with density fxj (x) and cumulative distribution function Fxj (x). Agents are identical

ex ante; i.e., these functions do not vary across agents, but may do so across projects.

I also make the usual assumption of these being common knowledge. The variables x
j
i

are considered as continuous random variables here, though my results apply also in the

discrete case with the proper adaptation of the concepts to the discrete environment.

A mechanism is called ex post efficient if it picks out efficient projects for every possible

private valuation profile. Project j is (ex post Pareto) efficient if
∑

i∈N x
j
i ≥

∑
i∈N xki for

all k ∈ P . With this, the social planner’s objective is identified.

The multibidding mechanism can be formally defined as follows:

In the unique stage of the game, agents simultaneously submit a vector of two real

numbers, one for each available project, that sum up to zero. These numbers are called

bids where B
j
i denotes agent i’s bid for project j.

The project with the highest aggregated bid B
j
N =

∑
i∈N B

j
i is chosen winner. Ties

are broken randomly.

Once chosen, the winning project is carried out and agents enjoy the utility that it

delivers. They also must pay/receive their bids submitted for the winning project and

they are returned the aggregated winning bid in equal shares. For example, if project j

has obtained the largest aggregated bid, then player i receives pay-off V
j
i = x

j
i−B

j
i+

1
n
B
j
N .

By the rules of the multibidding game B1
i = −B2

i for every i, so bids may be negative,

but the aggregated winning bid B
j
N is always non-negative.

The multibidding game achieves budget balance by construction, because the raised

revenue by bids is entirely given back to participants. The social planner or some central

authority does not need any positive or negative amount of money to operate it, therefore

it is safe.

The other properties of the mechanism are studied assuming that agents behave strate-

gically and form their bids as to maximize their expected payoff based on the information

available to them. Their being ex ante identical, the symmetric Bayes-Nash equilibria

(SBNE) of the game are considered. Therefore, the bid for a given project j is repre-

sented by Bj (x1i , x
2
i ) as a function of the personal characteristics whose form does not

depend on the identity of the player. The expected utility for player i is defined as the

expected value of V j
i . The bidding function that maximizes players’ expected utility will

be called optimal.

Since submitted bids must add up to zero, agents are forced to report on their relative

preferences between the two projects. The optimal bidding behavior of agents taking

part in the multibidding game satisfies an appealing and intuitive property: it depends
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only on the difference between their private valuations for the two projects. That is, at

equilibrium agents do report truthfully on their relative valuation of the projects.

Lemma 1 In the SBNE of the multibidding game, the optimal bidding function depends

only on the difference between private valuations for the two projects.

Taking into account the result from Lemma 1, one can reformulate the problem at

hand. For that, some more pieces of notation are needed. Let the difference between

player i’s private valuations be di with the following definition: di = x1i − x2i . This

new variable is random in general, since it is defined by the difference between two other

random variables. Abusing notation slightly, denote its density by f (d) and its cumulative

distribution function by F (d). Due to presentational considerations, first I study problems

in which f (d) is symmetric to the origin.4 There does not appear any subindex on these

objects, because they are common to every agent and correspond to a central variable.

With the bidding function for project j being Bj (di) for every player i, the payoff

that player i receives if project j obtains the largest aggregated bid can be rewritten as:

V
j
i

(
x
j
i , d1, . . . , dn, B

j
)
= x

j
i −Bj (di) +

1

n

∑

i∈N
Bj (di) .

Player 1’s expected utility, when she happens to value project 1 by x11, d1 utility units

more than project 2, and bids as if this difference were a value y1, can be written in the

following form:

v1
(
x11, x

2
1, d1, y1, B

1, B2
)
=

=

∫
. . .

∫

(d2,...,dn) such that
project 1 wins

V 1
1

(
x11, y1, . . . , dn, B

1
)
· f (d2) · . . . · f (dn) dd2 . . . ddn+

+

∫
. . .

∫

(d2,...,dn) such that
project 2 wins

V 2
1

(
x21, y1, . . . , dn, B

2
)
· f (d2) · . . . · f (dn) dd2 . . . ddn.

For simplicity, I shall write player i’s expected utility as vi [x
1
i , di, B (yi)], because x1i and

di give the individual valuations for both projects and by Lemma 1, given the bidding

function, it is di that determines bids. Also, Lemma 1 combined with the complementarity

of bids makes that a single function B can characterize the bidding behavior. This notation

will be very helpful in the following analysis and for this reason let me reiterate the

meaning of the above symbols. Player 1, exactly as the other (n− 1) players in the game,

considers two possible results of the social decision procedure: either project 1 or project

2 will be carried out. The first one delivers x11 units of utility to player 1 who must

4This assumption on the symmetry of the distribution is not crucial for any of my results, but makes

explanations simpler. I comment on the consequencies of asymmetry in a separate section.
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pay her bid, B1 (y1), for project 1 and will receive the nth part of the aggregated bid,
1
n

[
B1 (y1) +

∑
j∈N\{1}B

1 (dj)
]
. Note that B1 (y1) can perfectly be a negative number,

nevertheless I shall use the term pay when referring to monetary transactions according

to bids. The expression for the expected utility involves (n− 1) integrals, because every

agent is faced with the uncertainty captured by (n− 1) random variables, the differences

between others’ private valuations. The second term is to be interpreted in a similar way.

The characterization of the optimal bidding function can be enriched by some general

results on its smoothness and increasing nature. The proof behind these intuitive facts

uses standard arguments to be found, for example, in Fudenberg and Tirole (1991), but

adapted to the multibidding game.

Lemma 2 In the SBNE of the multibidding game, the optimal bidding function is con-

tinuous and strictly increasing.

Thanks to the assumption on the symmetry of the underlying distribution, the optimal

bidding function is also symmetric as it is shown in Lemma 3.

Lemma 3 In the SBNE of the multibidding game, the optimal bidding function satisfies

the following symmetry property: Bj (−di) = −Bj (di) for every j and di.

This result has a key role in deriving ex post efficient outcomes. It simplifies proofs

and helps to compare the multibidding game to other mechanisms in the literature. Its

impact is studied carefully in the next sections.

Taking into account the situations in the above examples, it seems natural to suppose

that agents might abstain from participating in the bidding (decision making), but can

not escape from the externalities, if such external effects exist. For example, villages and

towns affected by the public project may wish not to exert influence on the choice of the

project, but are still affected by both the positive and the negative consequences of the

others’ decision. The multibidding mechanism, however, has another appealing property

which assures that agents cannot do better by staying out of the decision making process.

Proposition 1 The multibidding mechanism is individually rational.

The intuition behind the above result is that non-participation, as for bids and the

collective choice of the project to be carried out, is equivalent to bidding zero. This bid,

of course, will not, in general, be optimal. Moreover, the abstaining agent looses her part

from the aggregated bid that is always non-negative in this mechanism.

Now, I start analyzing the efficiency properties of the multibidding mechanism with

private information. For two players, one can compute the explicit form of the optimal
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bidding function in the multibidding mechanism; in the present set-up, it is always ef-

ficient. If there are more than two players in the game, efficiency is not guaranteed in

general. However, the problem of inefficient decisions diminishes with a large number of

players or a large degree of uncertainty.

3 The two-player case

Consider the situation in which a casino must be located in one of two cities; suppose

these cities have no precise information concerning how the other values the project. When

cities are asked individually for their preferences, they have incentives to exaggerate, not

to report it truthfully. The multibidding mechanism can help to overcome this problem

in the decision making process. In this example, the following interpretation is given to

the previously defined variables:

• Project i: city i builds the casino.

• The differences between private valuations di show how city i’s utility changes when

city 1 gets the right to build the casino. Let B (di) denote the optimal bidding

function determining city i’s bid for project 1.

When both x11 and x22 are positive, and x21 = x12 = 0, we have the case in which a

desired object has to be allocated between two agents who experience no regret or envy

when loosing. I shall refer to this case as the classical case.5

Now city 1, which experiences x11 and d1, and bids according to some function B at

point y1, has to maximize the following expression:

v1
[
x11, d1, B (y1)

]
=

∫

B(y1)+B(d2)≥0

{
x11 −B (y1) +

1

2
[B (y1) +B (d2)]

}
· f (d2) dd2+

+

∫

B(y1)+B(d2)≤0

{
x21 +B (y1)−

1

2
[B (y1) +B (d2)]

}
· f (d2) dd2.

In this situation, the multibidding mechanism generates the ex post efficient outcomes;

i.e., it chooses efficient projects that are socially optimal. In the classical case, it means

that it assigns the object to the player who values it most.

Proposition 2 In its SBNE with two players, the multibidding mechanism is efficient.

5Note that the classical case enters in my setup if x1
1

and x2
2

have the same symmetric distribution,

while x2
1

and x1
2

are degenerate random variables.
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Symmetry of the optimal bidding function, its monotonicity, and the winning project’s

being chosen by the largest aggregated bid deliver this result. Intuitively, it is because

the complemetary bids of the multibidding mechanism that extract information from

participants on their relative private valuations between the projects. Since one of the

two projects must be carried out by assumption, the absolute social impact of the projects

is irrelevant for efficiency. Social welfare is maximized taking into account the sum of

individual relative impacts that are revealed truthfully in the equilibrium aggregated

bids.

The multibidding game is secure for participants too, because they can guarantee for

themselves a minimum payoff by bidding the half of the difference between their private

valuations for the two projects. Since the aggregate bid for the winning project is always

non-negative, the utility level that players enjoy ex post is never less than the personal

average of private valuations. The bidding function represented by a line with slope 1
2

corresponds to these maximin strategies.

Efficiency, budget balance, and individual rationality are appealing properties, but one

also might be interested in the explicit form of the optimal bidding function. This could be

used in empirical work when one recovers private valuations from data on observed bids.

Denote by dM the median difference, defined by the difference that solves the following

equality F (dM) =
1
2
.6

Proposition 3 In the SBNE of the multibidding game with two players, the optimal

bidding function can be written as

B (di) =






1
2
di +

1
2
[1− 2F (di)]−2 ·

∫ dM
di
[1− 2F (t)]2 dt if di < dM

di
2

if di = dM
1
2
di − 1

2
[1− 2F (di)]−2 ·

∫ di
dM
[1− 2F (t)]2 dt if di > dM





. (1)

When considering SBNE, Proposition 3 shows that the above described maximin bid-

ding behavior is only optimal at the median difference di. For di’s above the median it

is optimal to bid less aggressively, because bidding truthfully according to the optimal

bidding function balances the probability of the preferred project to win and the utility

loss due to paying bids. This maximizes agent i’s expected utility, because with di in-

creasing above the median level, the population that agent i should outbid in order to

achieve a favorable outcome for herself is getting smaller. The intuition for values below

the median is very similar and it also follows from the symmetry property of the optimal

bidding function.

6Since the distribution of di is symmetric here, the median coincides with the expected value. But

this is not the case in general as I discuss in Section 5.
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Before deriving result for the general n-player case, I consider some numerical exam-

ples which involve computing and plotting the optimal bidding function for two concrete

distributions, the uniform and the normal. The uniform and the normal distributions,

apart from their practical importance, play a crucial role in the general case.

Example 1 The uniform distribution: agents attach the same likelihood to each value

in the interval from which the differences between private valuations are drawn. When

differences are distributed uniformly, di ∼ U [a; b], the mathematical form of the optimal

bidding function can be simplified to B (di) =
1
3
di +

a+b
12

for di ∈ [a; b]. Note that the

function is linear. This feature is a property of the uniform distribution, because when

player i increases her bid from B (di) with one unit she outbids the same number of players

independently on the original bid, B (di). When the uniform distribution is symmetric

abound 0, the optimal bidding function is proportional, and does not depend on the limits

of the interval of possible differences. The slope is 1
3

of the experienced difference. Graph 1

plots the optimal bidding function in the U [−1; 1] case. For reference the picture contains

the 1
2
di maximin line.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
Maximin strategy 
median/mean 

Optimal bidding function 
 

(Graph 1. Optimal bidding function with uniform distribution and maximin strategies.)

Example 2 The normal distribution. In this example I consider the standard normal

distribution and another having mean zero and variance four. The optimal bidding func-

tions cannot be put in a simple explicit form as in the previous example. Therefore, I

represent them graphically. Graph 2 also contains the 1
2
di maximin line for reference. As

one can observe in both cases, the optimal bidding function equals zero when the difference

between private valuations is zero, its slope increases and it gets closer to linear as the
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variance (uncertainty) increases.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

Maximin strategy 
Optimal bidding function; var=4 

Optimal bidding function; var=1 
median/mean 

(Graph 2. Optimal bidding function with normal distributions and maximin strategies.)

4 Large groups

The construction of a casino may affect the welfare of a whole community formed by many

agents. Therefore, it is important to explore the properties of the multibidding game in

the presence of groups with cardinality larger than two. It turns out that whenever there

are more then two participants in the bidding the characteristics of the SBNE of the

mechanism related to efficiency change.

Lemma 4 In its SBNE with n > 2, the multibidding mechanism is ex post efficient if

and only if the optimal bidding function is proportional, i.e. B (di) = β · di with some

parameter β > 0 for all i ∈ N .

Efficiency of the multibidding mechanism cannot be guaranteed, in general, for any

number of players. In the case of large groups, the efficiency requirement puts an impor-

tant restriction on the admissible bidding function in equilibrium: it must be proportional

to di.

Even if proportional functions are intuitive and easy to analyze, it turns out that they

are suboptimal, in general. The reason behind this finding can be described as follows.

Participants in the n-player case are face an aggregate of bids that can be considered as

the bid of an imaginary player with a difference between her private valuations defined by

D =
∑

j∈N\{i} di. Knowing f (di) the distribution of this aggregate can be characterized,

being the sum of (n− 1) independent and identically-distributed random variables whose

density I shall denote by fD (D). With a proportional bidding function this imaginary
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player bids β ·D for project 1. For example, if each di is drawn from the normal distribu-

tion, then D will be distributed normally, too. And we have seen in the previous section

that in that case the optimal bidding function is not proportional, not even linear.

Nevertheless, when n gets large, the distribution of D can be characterized by a very

flat density function, since the variances of di add up. This distribution can also be

considered as very close to a uniform. When this distribution can be approximated by

a uniform distribution that is symmetric around zero, the multibidding mechanism can

approximate ex post efficiency. Therefore, a proportional bidding function is not a bad

choice whenever the number of participants is large enough. Proposition 4 and its proof

make the above argument more rigorous.

Proposition 4 In the SBNE of the multibidding game, when n is large, the optimal

bidding function is close to a proportional function with slope n
4n−2 .

Graphs 3 delivers the graphical argument behind Proposition 4. It plots the optimal

bidding function for the case with two players when the distribution of differences is

normal with a large variance (100).7 For reference it also contains the 1
2
di line and the

optimal bidding function computed with a standard normal distribution. One can observe

that with the increase of the variance the bidding function in equilibrium gets close to

linear, in particular to a proportional function with slope 1
3
.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

Maximin strategy 
optimal biding function; var=100 

Optimal bidding function; var=1 
median/mean 

(Graph 3. Optimal bidding function with normal distribution and maximin strategies.)

The intuition behind the result can be described in the following way: as the number of

participants gets larger each agent faces higher uncertainty, because the sum of everybody

else’s bid, D, can obtain values from a larger set. In statistical terms, the variance of D

7The normal distribution is considered here, because by the central limit theorem the distribution of

D gets close to normal with growing variance as n increases.
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is getting larger. Instead of computing the exact distribution of D, agents might find

satisfactory to approximate it by a uniform distribution. In the proof of Proposition 4

I show that the error of this approximation can be as small as one may require if the

number of agents can grow arbitrary large. Proposition 5 gives the rate of convergence by

showing the order of the approximation error under the condition that f has uniformly

bounded third moments.

Proposition 5 The error in the approximation (around zero) of the density of a sum

of centered, independent and identically-distributed random variables that has uniformly

bounded third moments, with a constant is of order n−
1

2 .

In the case of a uniform distribution that is symmetric around zero the optimal bidding

function is proportional. Once Proposition 4 and Lemma 4 are combined, it is shown

that the multibidding mechanism recovers efficiency if the number of affected parties (i.e.

participants) is large. On the efficiency properties of the mechanism, I state the following

two propositions.

Proposition 6 In its SBNE, when n is large, the multibidding mechanism is close to

efficient.

Proposition 7 offers a result similar to the ones in Proposition 4 and Proposition 6

without the condition on n, the number of participants, being large, but with individual

uncertainty of a very high degree. Technically speaking this means that the variance of

the di is large. Therefore, the variance of the aggregate D is also very large. With this

the multibidding mechanism can approximate efficiency also in cases with a small number

of players that face big uncertainty.

Proposition 7 In its SBNE, when uncertainty is large, the multibidding mechanism is

close to efficient.

A few comments on two practical features of the n-player model are now in order. The

efficiency of the mechanism is obtained only in the limit, but in empirical situations one

hardly finds an infinite number of participants. The following three points give support

for the possible existence of efficient outcomes and suggest a method that agents might

use in order to compute their almost optimal bidding function.

• Consider a finite number of participants. As shown in the proof of Proposition 4, if

the optimal bidding function is linear, i.e. B (di) = β · di, the slope coefficient, β,

should solve the following equality for all di

−di · fD (−di)(
1
n
− 1

)
+ 2

(
1− 1

n

)
· FD (−di)− 2di · fD (−di)

= β, (2)

13



where the symbol FD (·) stands for the accumulative distribution function of D.

This is clearly impossible, in general. That is why the multibidding mechanism

only reaches efficiency in the limit. Nevertheless, for large n, agents might bid pro-

portionally, since the error they make decreases with n. On the other hand, the

proportional bidding function is easy to apply and analyze.

For simplicity, denote the left-hand side of equation 2 by b (di). Let us denote the

largest and the smallest possible value of di by dmax and dmin respectively.8 Now

agent i can find the value for β that minimizes the mean squared error (MSE), de-

fined as MSE =
∫ dmax
dmin

[b (di)− β]2·f (di) ddi. The minimization problemminβMSE

such that β > 0 implies that β =
∫ dmax
dmin

b (di) · f (di) ddi = E [b (di)], where E [·] is

the expected value operator.

• The proof of Proposition 4 shows that the error made by approximating the optimal

bidding function by a proportional one diminishes as the number of participants

grows. For efficiency, a large number of participants is needed. However, it is

natural to ask how large is large. Even though I can not deliver an explicit formula

for the optimal bidding function in the general n-player case, simulations have been

performed and their results answer the above question.9 Numerical simulations

of the multibidding game also suggest that efficiency increases with the number of

bidders (above two) in a continuos way. For the case in which uncertainty is captured

by the uniform distribution, U [−1; 1], Table 1 shows the number of efficient decision

as a function of the number of bidders.

n 2 3 5 10 20

efficient decisions 100% 98.6% 99.1% 99.5% 99.6%

(Table 1. Number of efficient decisions as a function of group size in the U [−1; 1] case.)

One can observe that, even in the 3-player case, one with the highest number of

inefficient decisions, approximately 98.6% of the decisions will maximize social wel-

fare. Graph 4 plots the simulated optimal bidding function for the 3-player and

20-player cases in this example. It illustrates how the function looses curvature and

8The limits, dmax and dmin, may very well be infinite.
9The simulation results have been generated using Ox version 2.20 (see Doornik, 1999), and are based

on theoretical results that are presented in a subsection by the end of the appendix.
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gets proportional with the increasing number of participants.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

Optimal bidding function; n=3 
median/mean 

Optimal biding function; n=20 
 

(Graph 4. Simulated optimal bidding functions for the U [−1; 1] case with 3 and 20 players.)

• One can also argue that the interpretation of the above assumptions can be changed

in the following way: agents’ prior beliefs might not coincide with the underlying

true distributions. The results hold, as long as they are symmetric and identical

for every participant in the model. This argument gives more field for the efficiency

result in the n-player case: when agents expect in a symmetric manner that every

state of the world is equally likely to occur, the distribution of D will be symmetric

and uniform. In this case, agents will bid according to a proportional function in

equilibrium. Therefore, ex post efficiency will be achieved.

5 Asymmetries and a dissolving partnership

The literature on mechanism design has discussed extensively the problem of dissolving

partnerships. The problem is a classical one which has admitted efficient solutions under

fairly general conditions. For a broad summary of the performance of simple mechanisms

that one might use in such situations under uncertainty see McAfee (1992). The multi-

bidding mechanism widens this list. The two-player problem serves as a reference point

for further generalization. Moreover, this example will be useful in order to illustrate the

importance of symmetry in prior beliefs. The assumption concerning the symmetry of

the distribution of the difference between private valuations, di, is now relaxed and its

consequences are studied.10

10Nevertheless, I keep the assumption of symmetry of the support of this distribution. The lack of this

assumption would bring us to the case that is known as asymmetric auctions in the literature. At this

point of the study of the multibidding game I wish to concentrate on other features of the mechanism

and keep this topic for further research.
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When a marriage or, in general, a partnership breaks down there are usually indivis-

ible objects to be allocated among two agents. For technical reasons, the literature on

mechanism design, and closer the literature on auction theory, typically considers a single

object. Using now this nomenclature, two parties and two projects exist: under one party

1 receives the object, while under the other party 2 gets it. I shall assume that players

have private valuations over these projects and the social planner wishes to allocate the

object taking into account social welfare and is not interested in raising revenue.

Let me now consider two parties and an indivisible good that has to be allocated among

them. In this section, we shall use the multibidding mechanism to solve the problem. For

this reason, the following interpretation is given to the variables:

• Project i: player i receives the object.

As for the differences between private valuations, in the two-player case one can pro-

ceed in two ways to be called the symmetric case and the asymmetric one due to the

different meaning of the bidding function in them. I introduce the following piece of

notation: f∗ is a density function such that f (−d) = f∗ (d) for all d. The respective cu-

mulative distribution function is F ∗. B∗ (di) denotes the optimal bidding function in the

case of f∗ (d) being the density of the underlying distribution and F ∗ (d) its distribution

function. In other words, if B (·) represents bids for project 1, then B∗ (·) denotes bids

for its alternative computed in the problem where project names are reversed, and vice

versa.

Lemma 5 In the SBNE of the multibidding game, the optimal bidding function satisfies

the following property: B∗ (−di) = −B (di) for every di.

• The asymmetric case arises once one defines the differences between private valua-

tions in the following way: d1 = x11−x21 and d2 = x22−x12. Hence, di shows how agent

i’s utility changes when she gets the object. Therefore, the optimal bidding func-

tion B (di) can be interpreted as player i’s bid for having the object. I shall assume

that the distributions of these two differences coincide and can be characterized by

functions f (d) and F (d). However with this, players value the projects in an asym-

metric, in fact opposite, way. The bidding function (1) presented in Proposition 3 is

the optimal bidding function in the asymmetric case for any underlying distribution

characterizing uncertainty. This guarantees ex post efficiency in general.

• The symmetric case follows from the model specification according to which d1 =

x11 − x21 and d2 = x12 − x22. With this, the optimal bidding function B (di) can

be interpreted as player i’s bid for the first project in equilibrium. Similarly, in
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the asymmetric case, consider situations in which the distributions of d1 and d2

coincide, and can be characterized by the density function f (d) and the cumulative

distribution function F (d). The name symmetric is due to the latter assumption,

since now players value the projects in the same manner, according to the same

underlying distribution that does not need to be symmetric. The symmetry of prior

belief on di is crucial for ex post efficiency in this case. If prior beliefs follow an

asymmetric distribution, then inefficient decisions may occur in the symmetric case.

Proposition 8 and 9 analyze this problem.

In the symmetric case, players tend to prefer the same project and seem not to be as

antagonistically opposed as in the asymmetric case. This situation may arise, for example,

when the two affected parties share the same opinion on the allocation of the indivisible

object in question. That is, they tend to value the projects in the same way, according to

the same underlying distribution. Based on Lemma 3 it is easy to derive the explicit form

of the optimal bidding function, and I can state the symmetric version of Proposition 3.

Proposition 8 In the SBNE of the multibidding game with two players, the optimal

bidding function can be written as

B (d1) =






1
2
d1 +

1
2
[1− 2F ∗ (d1)]

−2 ·
∫ d∗

M

d1
[1− 2F ∗ (t)]2 dt if d1 < d∗M

d1
2

if d1 = d∗M
1
2
d1 − 1

2
[1− 2F ∗ (d1)]

−2 ·
∫ d1
d∗
M

[1− 2F ∗ (t)]2 dt if d1 > d∗M





.

Remember that by definition F ∗ (d∗M) =
1
2
. Note that the distinction between the

symmetric and the asymmetric cases becomes superfluous whenever the underlying dis-

tribution of differences in valuations is symmetric. This intuitive fact makes that the

bidding functions presented in Graphs 1-3 are optimal both in the symmetric and asym-

metric set-up.

The result on the optimal bidding function in the multibidding game shares some in-

teresting features with the cake-cutting mechanism (CCM) studied in McAfee (1992).11

In the CCM, players bid their true valuations at the median. In the multibidding game,

at the median players bid half of the difference between their valuations. This not being

the whole truth can be intuitively explained by the rules of the multibidding mechanism,

because players are forced to bid over two projects and bids must sum up to zero. Be-

low the median value, players overbid in the sense that B (di) is larger than the half of

the difference between the private valuations. While above the median they underbid.

11In the cake-cutting mechanism, one party proposes a division and the other party chooses one of the

parts of the division. This mechanism can be adapted to the indivisible case when money is available in

the economy. For more details check McAfee (1992).
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Nevertheless, there is an important difference between the CCM and the multibidding

mechanism: the latter treats players symmetrically and precisely because ex post effi-

ciency can be achieved. The CCM, distinguishing the roles of proposer and chooser, turns

out to be "ex post inefficient, and in an unusual way" [McAfee (1992)].

In the (symmetric) case, when players bid for the same project according to the same

bidding function, this may cause the loss of ex-post social efficiency. As shown previously,

this problem is absent when players bid for opposite projects using the same bidding

function. The next proposition states that for ex-post efficiency, in the symmetric case,

a certain condition on the symmetry of the optimal bidding function must hold. This

condition requires the symmetry of the distribution of the prior beliefs.

Proposition 9 In its SBNE with two players, the multibidding mechanism is efficient if

and only if the prior distribution is symmetric, that is if and only if the following condition

holds: B (−di) = −B (di) for every di and every i.

Section 4 showed that in situations with more than two players the multibidding

game can only deliver ex post efficient decisions if players bid according to a proportional

function in equilibrium. Once the original assumption of symmetry of the underlying

density function is relaxed, an extra condition is needed to ensure proportionality in the

n-player case. The increasing number of bidders increases uncertainty and makes the

optimal bidding function flatter, closer to linear in the model. With this, the number of

ex post efficient decisions also increases. However a constant term in the bidding function

works against this improvement and makes inefficient decisions persist even with very

large number of players. As shown in the proofs of the propositions for the n-player case,

the expected value of the aggregate D must be zero for results to hold. This condition is

satisfied when the distribution of d is symmetric; i.e., when agents value the two project

equal in expected terms, since this implies that the expected value of d and also D is zero.

6 Conclusions

I have examined the problem of choosing a project efficiently by a group of agents, and

studied the theoretical performance of the multibidding mechanism in situations in which

agents may hold private information. My analysis is embedded in a general model with

any number, n, of players and any number, m, of projects. Therefore, in the present

work, I determined the properties of equilibria in the case of two available projects and

risk-neutral players. The complexity arising when more than two projects or risk-aversion

appears because of the rules of the multibidding game, expected utilities depend on more

than one variable. When two projects exist, agents’ expected utility depends on the two
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private valuations, too, but the dimension of the problem can be reduced by one. As has

been shown, it is enough to know the difference between those private valuations in order

to be able to determine the optimal bidding behavior. The multibidding mechanism is

always efficient in the two-player two-project case with the above restriction, and with the

symmetry of prior distributions or asymmetry of players, while efficiency is tied to more

conditions when there are more players: the number of agents must be large or (with

a similar intuition behind) uncertainty must be large with zero expected value, in order

to achieve efficient outcomes. Because of presentational considerations, a continuum of

possible valuations has been used, but the results, with the proper modification, hold in

the discrete case too.

It is important to bear in mind that in the analysis attention was focused on symmetric

Bayes-Nash equilibria; i.e. agents face the same uncertainty and act according to the same

optimal bidding function. The appealing features of the multibidding mechanism without

uncertainty, and under uncertainty with two projects and risk neutral agents, make it a

powerful tool for choosing an efficient project by some set of players in the presence of a

public good and/or externalities. The mechanism is simple and can be easily understood

by agents even in the most general n×m case. Determining the properties of its equilibria

in the general case is a topic for further research.

Beside its theoretical performance, both with and without uncertainty, the multibid-

ding game has also appealing empirical properties. Pérez-Castrillo and Veszteg (2004)

report results from the experimental laboratory on the mechanism presented here. In

terms of efficiency, the multibidding game selects the ex post efficient project in roughly

three quarters of the cases across four experimental treatments. In line with the theoreti-

cal predictions, the number of efficient decisions was larger when individuals were paired

than when they formed groups of larger size. Also, the largest part of the subject pool

formed their bids according to the theoretical Bayes-Nash bidding behavior.

7 Appendix

The appendix contains the formal proof of all the results in the paper in the order as they

appear in the text.

Proof of Lemma 1. Consider the following notation: agent 1 experiences (x11, x
2
1)

and bids for project 1 according to some function B1 = −B2 at (y11, y
2
1). The other agents

have private valuations
(
x1−1, x

2
−1
)
= [(x12, x

1
3, . . .) , (x

2
2, x

2
3, . . .)] and bid truthfully using

the same function B1. The distribution of the vector x
j
−1 can be characterized by the

density fj which is the joint density of the others’ valuations for project j. The expected
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utility for agent 1 can be written as:

v1
[
x11, x

2
1, B

1
(
y11, y

2
1

)]
=

=

∫ ∫

(x1−1,x2−1) such that

project1 wins



x11 −B1
(
y11, y

2
1

)
+
1

n
B1

(
y11, y

2
1

)
+
1

n

∑

i∈N\{1}
B1

(
x1i , x

2
i

)


 ·

·f1
(
x1−1

)
· f2

(
x2−1

)
dx1−1dx

2
−1+

+

∫ ∫

(x1−1,x2−1) such that

project2 wins



x21 +B1
(
y11, y

2
1

)
− 1

n
B1

(
y11, y

2
1

)
− 1

n

∑

i∈N\{1}
B1

(
x1i , x

2
i

)


 ·

·f1
(
x1−1

)
· f2

(
x2−1

)
dx1−1dx

2
−1

Now consider the case in which agent 1’s private values are (x11 + δ, x21 + δ) where δ has a

constant real value. In order to prove Lemma 1 it is enough to show that

∂v1 [x
1
1, x

2
1, B

1 (y11, y
2
1)]

∂y
j
1

=
∂v1 [x

1
1 + δ, x21 + δ, B1 (y11, y

2
1)]

∂y
j
1

(3)

for j = 1, 2. Note that

v1
[
x11 + δ, x21 + δ,B1

(
y11, y

2
1

)]
=

=

∫ ∫

(x1−1,x2−1) such that

project1 wins



x11 + δ −B1
(
y11, y

2
1

)
+
1

n
B1

(
y11, y

2
1

)
+
1

n

∑

i∈N\{1}
B1

(
x1i , x

2
i

)


 ·

·f1
(
x1−1

)
· f2

(
x2−1

)
dx1−1dx

2
−1+

+

∫ ∫

(x1−1,x2−1) such that

project2 wins



x21 + δ +B1
(
y11, y

2
1

)
− 1

n
B1

(
y11, y

2
1

)
− 1

n

∑

i∈N\{1}
B1

(
x1i , x

2
i

)


 ·

·f1
(
x1−1

)
· f2

(
x2−1

)
dx1−1dx

2
−1 =

= v1
[
x11, x

2
1, B

1
(
y11, y

2
1

)]
+ δ.

Taking into account the first and the last expression in the equality above (3) follows

immediately.

Proof of Lemma 2. Let us prove first that the optimal bidding function is increas-

ing.

Note that for project 1 to be the winning project I must have a non-negative aggregated

bid for project 1; i.e., B (y1) +
∑

i∈N\{1}B (di) ≥ 0. Player 1’s expected utility can be

20



written in general as

v1
[
x11, d1, B (y1)

]
=

∫
. . .

∫

(d2,...,dn) such that
project1 wins



x11 −B (y1) +
1

n
B (y1) +

1

n

∑

i∈N\{1}
B (di)



 ·

·f (d2) · . . . · f (dn) dd2 . . . ddn+

+

∫
. . .

∫

(d2,...,dn) such that
project2 wins



x21 +B (y1)−
1

n
B (y1)−

1

n

∑

i∈N\{1}
B (di)



 ·

·f (d2) · . . . · f (dn) dd2 . . . ddn.

Since B is the optimal bidding function, for any d1 and d∗1 such that d1 > d∗1 I have that

v1
[
x11, d1, B (d1)

]
≥ v1

[
x11, d1, B (d

∗
1)
]

;

v1
[
x11, d

∗
1, B (d

∗
1)
]
≥ v1

[
x11, d

∗
1, B (d1)

]
.

And therefore

v1
[
x11, d1, B (d1)

]
− v1

[
x11, d

∗
1, B (d1)

]
≥ v1

[
x11, d1, B (d

∗
1)
]
− v1

[
x11, d

∗
1, B (d

∗
1)
]

. (4)

For the sake of this proof let us normalize player 1’s private valuation such that d1 = x11,

(0 = x21) and d2 = x22, (0 = x12). This will not effect the generality of my results since

this normalization can be done by adding/subtracting the same constant from both sides

in inequality 4. Let us substitute the expected utilities with their form in integrals and

simplify the result.
∫

. . .

∫

B(d1)+
∑
i∈N\{1} B(di)≥0

(d1 − d∗1) · f (d2) · . . . · f (dn) dd2 . . . ddn ≥

≥
∫

. . .

∫

B(d∗1)+
∑
i∈N\{1} B(di)≥0

(d1 − d∗1) · f (d2) · . . . · f (dn) dd2 . . . ddn

For this inequality to hold I must have B (d1) ≥ B (d∗1) and this completes the first part

of the proof.

Strict monotonicity and continuity can be proven using a standard indirect argument

following Fudenberg and Tirole (1991). I only explain the idea of the proof here.

Strict monotonicity: suppose that there is an atom at b in the bidding function, that

is pr [B (dj) = b] > 0 for some agent j. In this case agent i would assign probability 0 to

the interval [b− ε; b) for some ε > 0, and she bids just above b. But then agent j with

a difference dj such that B (dj) = b, would be better off bidding b − ε, as this does not

reduce the probability of winning, but does reduce cost. Therefore there cannot be an

atom at b.
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Continuity: if B is discontinuous I can find b′ and b′′(> b′) such that pr {B (dj) ∈ [b′; b′′]} =
0, while there exist d∗j and ε ≥ 0 for which B

(
d∗j
)
= b′′ + ε. In this case, agent i strictly

prefers bidding b′ to any other bid in (b′; b′′), since doing so does not reduce the probabil-

ity of winning, but does reduce cost. But then agent j’s choice of quitting at b′′, or just

beyond, is not optimal when she experiences d∗j . Therefore B is continuous.

Proof of Lemma 3. I shall omit the superindex from the optimal bidding function

in the proof, since B1 (di) = −B2 (di) holds for every di. Suppose that agent i experiences

private valuations with a difference of di = x1i−x2i . Her bid for project 1 in the equilibrium

can be computed according to the optimal bidding function and will be equal to B (di).

Due to the rules of the multibidding mechanism, in particular to the fact that bids must

sum up to zero, with this her bid for project 2 is −B (di). Now I can consider situations

in which for player 1 it is more convenient to compute her bid for project 2 first, i.e. to

take into account d∗i = x2i − x1i = −di. Of course, equilibrium bids can not change with

the above technicality, therefore B∗ (−di) = B∗ (d∗i ) = −B (di). Since by symmetry the

density functions of di and d∗i coincide, we have for bidding functions that B = B∗. That

is B (−di) = −B (di).
Proof of Proposition 1. Consider agent i’s expected payoff when her type is

di. If she bids according to the optimal bidding function this quantity is equal to

vi [x
1
i , di, B (di)]. When agent i does not wish to influence the choice of the winning

project she can bid 0, and with it obtain vi (x
1
i , di, 0) in expected terms. For any di by

definition I have that vi [x
1
i , di, B (di)] ≥ vi (x

1
i , di, 0). With zero bid agent i does not

affect the choice of the winning project, but does receive her part from the aggregated

winning bid that is non-negative by the rules of the multibidding mechanism. If vai (x
1
i , di)

is agent i’s expected utility when she stays out of the process, then for any di I must have

vi [x
1
i , di, B (di)] ≥ vai (x

1
i , di). That is the multibidding mechanism is individually rational.

Proof of Proposition 2. This is a direct consequence of the fact that the optimal

bidding function is strictly increasing. To see this, consider the following table that

describes a two-player situation in general with the notation introduced in the text before.

project 1 project 2 di

player 1 x11 x21 x11 − x21

player 2 x12 x22 x12 − x22
∑

x11 + x12 x21 + x22 ∗

Note that for ex post efficiency I need project 1 to win if and only if x11 + x12 ≥ x21 + x22.

That is x11 − x21 + x12 − x22 ≥ 0, or d1 + d2 ≥ 0. The above requirement is met since the

optimal bidding function is strictly increasing and symmetric: d1 + d2 ≥ 0 ↔ d1 ≥ −d2
↔ B (d1) ≥ B (−d2) ↔ B (d1) ≥ −B (d2) ↔ B (d1) +B (d2) ≥ 0 ↔ Project 1 wins.
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Proof of Proposition 3. By result from Lemma 2 project 1 wins if B (d1) ≥
B (−d2), that is d1 ≥ −d2. Therefore project 1 wins with probability pr (d1 ≥ −d2) =
pr (−d1 ≤ d2) = 1− F (−d1). Due to the assumption on the symmetry of the underlying

density function the density of d2 and −d2 coincide. Now let us find the expected utility

for player 1 that experiences d1 (= x11 − x21) and bids according to y1 using the function

B:

v1
[
x11, d1, B (y1)

]
=

∫ y1

xL

{
x11 −B (y1) +

1

2
[B (y1) +B (d2)]

}
f (−d2) d (−d2)+

+

∫ xH

y1

{
x21 +B (y1)−

1

2
[B (y1) +B (d2)]

}
f (−d2) d (−d2) .

By the symmetry property of the optimal bidding function one can write:

v1
[
x11, d1, B (y1)

]
=

∫ y1

xL

{
x11 −

1

2
B (y1)−

1

2
B (−d2)

}
f (−d2) d (−d2)+

+

∫ xH

y1

{
x21 +

1

2
B (y1) +

1

2
B (−d2)

}
f (−d2) d (−d2) .

In order to simplify the above expression let us use the following notation: d∗2 = −d2.This

will also help to interpret the proof in the case when I relax the assumption on the

symmetry of f in Section 6.

v1
[
x11, d1, B (y1)

]
=

∫ y1

xL

[
x11 −

1

2
B (y1)−

1

2
B (d∗2)

]
f (d∗2) dd

∗
2+ (5)

+

∫ xH

y1

[
x21 +

1

2
B (y1) +

1

2
B (d∗2)

]
f (d∗2) dd

∗
2

Agents are supposed to maximize their expected utility in the bidding. The first order

condition of the problem is derived below.

∂

∂y1
v1
[
x11, d1, B (y1)

]
= −1

2

∫ y1

xL

B′ (y1) f (d
∗
2) dd

∗
2 +

[
x11 −

1

2
B (y1)−

1

2
B (y1)

]
f (y1)+

+
1

2

∫ xH

y1

B′ (y1) f (d
∗
2) dd

∗
2 −

[
x21 +

1

2
B (y1) +

1

2
B (y1)

]
f (y1) =

= −1
2
B′ (y1)F (y1) +

1

2
B′ (y1) [1− F (y1)] +

[
x11 − x21 −B (y1)−B (y1)

]
f (y1) =

=

[
1

2
− F (y1)

]
B′ (y1)− 2B (y1) f (y1) + d1f (y1) = 0

The optimal bidding function must solve the above differential equation for y1 = d1.

[
1

2
− F (d1)

]
B′ (d1)− 2B (d1) f (d1) + d1f (d1) = 0 (6)
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If F (d1) =
1
2

then B (d1) =
d1
2

. If F (d1) �= 1
2

we have that

B′ (d1)− 2
f (d1)

1
2
− F (d1)

B (d1) + d1
f (d1)

1
2
− F (d1)

= 0.

Let us introduce the notation A (d1) =
f(d1)

1

2
−F (d1) and x ∈ [xL, xH ]. The latter identifies the

lowest and the largest admissible value for x. The differential equation and its general

solution can be written now as

B′ (d1)− 2A (d1)B (d1) + d1A (d1) = 0,

B (d1) = exp

[
2

∫ d1

x

A (t) dt

]
·
(
η −

∫ d1

x

{
tA (t) · exp

[
−2

∫ t

x

A (s) ds

]}
dt

)
.

Note that the integrals in the solution might include a difference such that A (d1) is not

defined, therefore x must be carefully chosen. This parameter along with η can be fixed

taking into account that the optimal bidding function must be continuous and strictly

increasing.

One can check that the following function is the optimal bidding function in this

problem:

B (d1) =






1
2
d1 +

1
2
[1− 2F (d1)]−2 ·

∫ dM
d1
[1− 2F (t)]2 dt if d1 < dM

d1
2

if d1 = dM
1
2
d1 − 1

2
[1− 2F (d1)]−2 ·

∫ d1
dM
[1− 2F (t)]2 dt if d1 > dM





. (7)

To do so note that the following holds. For d1 > dM fix some x > dM and choose η such

that B′ (d1) > 0.

B (d1) =
1

2
d1 + [1− 2F (d1)]−2 ·

{
η − 1

2
xH +

1

2

∫ xH

d1

[1− 2F (t)]2 dt
}

Take η = 1
2
xH − 1

2

∫ xH
dM
[1− 2F (t)]2 dt. It exists, it is finite, it does not depend on d1 and

guarantees the properties that I require from B (d1). In particular, the optimal bidding

function needs to be continuous, therefore the above proposed value for η is unique. To

see this note that according to (7) discontinuity may occur at the median, and also that η

is a constant shifting parameter that allows us to move the optimal bidding function for

all d1 < dM in order to reach continuity at dM . For d1 < dM fix some x < dM and choose

η such that B′ (d1) > 0.

B (d1) =
1

2
d1 + [1− 2F (d1)]−2 ·

{
η − 1

2
xL −

1

2

∫ d1

xL

[1− 2F (t)]2 dt
}

Now take η = 1
2
xL +

1
2

∫ dM
xL
[1− 2F (t)]2 dt. It exists, it is finite, it does not depend on d1

and guarantees the properties that I require from B (d1). As in below the median, the
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proposed value for η is unique here, too. These parameter values give the expression in

equation 7 that completes the proof. Note that equation 6 and the monotonicity of the

optimal bidding function give both upper and lower bounds for the bid B (d1) once d1 is

fixed:

B (d1) ∈






[
d1
2
; dM
2

]
if d1 < dM[

dM
2

]
if d1 = dM[

dM
2
; d1
2

]
if d1 > dM





.

This result will be useful in the case with large groups.

Proof of Lemma 4. For ex post efficiency I need the aggregated optimal bid

function to be a increasing strictly monotone function of the aggregated true valuations.

If the optimal bid function is proportional, B (di) = βdi, this is the case, since
∑

i∈N B (di) = β
∑

i∈N di holds. I already know that β > 0, since the optimal bidding

function is strictly increasing.

In order to show the other implication consider the following. Suppose that I have
∑

i∈N B (di) = B for some vector d with
∑

i∈N di = A where A and B are some real

numbers. Now let the valuation change for some players i1 and i2 such that d∗i1 = di1+∆,

while d∗i2 = di2 −∆. Therefore
∑

i∈N d∗i = A. For the result to be ex post efficient I need

the aggregated bid to remain unchanged. To see this consider the following inequalities

implied by the ex post efficiency requirement:

∑

i∈N
di ≥

∑

i∈N
d∗i =

∑

i∈N
di ⇔

∑

i∈N
B (di) ≥

∑

i∈N
B (d∗i ) ,

∑

i∈N
di ≤

∑

i∈N
d∗i =

∑

i∈N
di ⇔

∑

i∈N
B (di) ≤

∑

i∈N
B (d∗i ) ,

that is ∑

i∈N
di =

∑

i∈N
d∗i ⇔

∑

i∈N
B (di) =

∑

i∈N
B (d∗i ) .

Having the above results I can write

B
(
d∗i1
)
+B

(
d∗i2
)
+

∑

i∈N\{i1,i2}
B (di)−

∑

i∈N
B (di) = 0,

B (di1 +∆) +B (di2 −∆) +
∑

i∈N\{i1,i2}
B (di)−

∑

i∈N
B (di) = 0,

B (di1 +∆)−B (di1) +B (di2 −∆)−B (di2) = 0,

B (di1 +∆)−B (di1)

∆
=

B (di2)−B (di2 −∆)
∆

,

for di1 and di2, and all ∆. I can consider ∆→ 0. The above requirement then says that

B′ (di1) = B′ (di2) for di1 and di2 . Precisely this means that the optimal bidding function

must be linear. Now let us argument that the constant term in this linear function must be
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equal to zero. If the mechanism is ex post efficient then
∑

i∈N B (di) = nα+β
∑

i∈N di ≥ 0
iff
∑

i∈N di ≥ 0.
Proof of Proposition 4. Consider Player 1’s expected utility with B (di) = βdi.

Since Project 1 is chosen if
∑

i∈N\{1} di = D ≥ −y1,

v1
[
x11, d1, B (y1)

]
=

∫

D≥−y1

[
x11 +

(
1

n
− 1

)
βy1 +

1

n
βD

]
· fD (D) dD+

+

∫

D<−y1

[
x21 +

(
1− 1

n

)
βy1 −

1

n
βD

]
· fD (D) dD,

where fD (D) is the density function of the aggregate D. Note that D ∈ [Dmin;Dmax] with

some lower, Dmin, and upper bound, Dmax, therefore:

v1
[
x11, d1, B (y1)

]
=

∫ Dmax

−y1

[
x11 +

(
1

n
− 1

)
βy1 +

1

n
βD

]
· fD (D) dD+

+

∫ −y1

Dmin

[
x21 +

(
1− 1

n

)
βy1 −

1

n
βD

]
· fD (D) dD.

∂

∂y1
v1
[
x11, d1, B (y1)

]
=

(
1

n
− 1

)
β ·

∫ Dmax

−y1
fD (D) dD +

(
1− 1

n

)
β ·

∫ −y1

Dmin

fD (D) dD+

+

[
d1 + 2

(
1

n
− 1

)
βy1 −

2

n
βy1

]
· fD (−y1) .

In the equilibrium the following equality is required to hold for every d1:

(
1

n
− 1

)
β ·

∫ Dmax

−d1
fD (D) dD +

(
1− 1

n

)
β ·

∫ −d1

Dmin

fD (D) dD+

+

[
d1 + 2

(
1

n
− 1

)
βd1 −

2

n
βd1

]
· fD (−d1) = 0.

The expression can be put in a different way.

β

[(
1

n
− 1

)
+ 2

(
1− 1

n

)
· FD (−d1)− 2d1 · fD (−d1)

]
+ d1 · fD (−d1) = 0.

This expression, in general for any FD and fD, cannot be set to be equal to zero for all

values of d1 by choosing a constant value for β. I already know that the optimal bid-

ding function is strictly increasing which can be translated into a strictly positive β in

the proportional case. Nevertheless, if the functions FD and fD belonged to the uniform

distribution over some interval [−a; a] I would have β = n
4n−2 . In other words, if the

distribution of D is uniform with expected value zero, the optimal bidding function is

proportional, hence ex post efficiency is achieved. This requirement is met in the special

case of symmetric distributions. The interval, [−a; a], is symmetric to zero by assumption,
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since D must have expected value zero. Since D is the sum of iid random variables as

n gets very large it converges to a normally distributed variable whose expected value is

zero and whose variance tends to infinity. Now let us argue that, when n is large, agents

do not make a big mistake if taking into account the uniform distribution instead of the

normal.

In order to keep expressions simple I consider the normal distribution with variance n.

If there are n agents the distribution of the sum of the differences of their private valua-

tions will typically have a variance of (n− 1)σ2. This simplification does not affect the

generality of my results. Consider the squared error of the approximation:

SQE (a, n) =

∫ a

−a

(
1√
2πn

e−
x2

2n − 1

2a

)2
dx+

∫ −a

−∞

(
1√
2πn

e−
x2

2n

)2
dx+

∫ ∞

a

(
1√
2πn

e−
x2

2n

)2
dx

One can show that the above expression can be written as SQE (a, n) = 1
2
√
πn
−1
a

[
2Φn (a)− 3

2

]
,

where Φn denotes the cumulative distribution function of the normal distribution with

zero mean and variance equal to n. As the parameters a and n increase the squared error

decreases towards zero. That is, for any ε > 0 one can find δ > 0 such that with any

a, n > δ I have SQE (a, n) < ε.

Proof of Proposition 5. For simplicity let us consider agent 1 as playing against

other n agents in the economy. If di ∼ iiF with expected value 0 and variance σ2, once we

suppose that F has uniformly bounded third moments, we get that
n+1∑

i=2

yij → N (0;nσ2)

in the sense of distribution. Moreover Berry (1941) shows that the error term of this

approximation in the neighborhood of zero is of order n−
1

2 . Now let us consider the error

in the approximation of the normal density with a constant. I study the following tolerance

measure for the goodness of the approximation; i.e., the first order Taylor approximation

of the normal density around 0:

Tol = max
d1∈[dmin;dmax]

|f (d1)− Pl (d1, 0)| , where

f (d1) =
1

σ
√
2πn

exp

(
− d21
2nσ2

)
and P1 (d1, 0) =

1

σ
√
2πn

.

Similarly to the two-player case, as shown in Proposition 3, individual bids are bounded

also in the n-player case, both from above and below. Take d∗ = max {|dmin| , |dmax|}. The

maximization problem in the definition of the tolerance function is solved at d∗, therefore:

Tol =
1

σ
√
2πn

∣∣∣∣exp
(
− d∗2

2nσ2

)
− 1

∣∣∣∣ .

Note that the inequality exp
(
− 1
2nσ2

)
−1 < 0 holds always in our examples. For this reason
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the tolerance function can be simplified and its properties in the limit can be written as:

Tol
(
n;σ2

)
=

1

σ
√
2πn

[
1− exp

(
− 1

2nσ2

)]
,

lim
n→∞

Tol
(
n;σ2

)
= 0, lim

σ2→∞
Tol

(
n;σ2

)
= 0, and lim

nσ2→∞
Tol

(
n;σ2

)
= 0.

As for the rate of convergence, note that we have that limn→∞
√
nTol (n;σ2) = 0. Hence

one can conclude that Tol (n;σ2) = op

(
n−

1

2

)
. Altogether, in two steps, it has been shown

that the error term in the approximation around zero of the density of a sum of centered

iid random variables, that have uniformly bounded third moments, with a constant is of

order n−
1

2 .

Proof of Proposition 6. This result follows immediately from Lemma 4 and

Proposition 4.

Proof of Proposition 7. The result in Proposition 4 relies on the fact that the

variance of D can be any large whenever the number of participants is large enough.

Naturally the large variance of D can be due to the large variance of every single di, too.

Proof of Lemma 5. Suppose that agent i experiences private valuations with a

difference of d1 = x11 − x21. Her bid for project 1 in the equilibrium can be computed

according to the optimal bidding function and will be equal to B (d1). Due to the rules

of the multibidding mechanism, in particular to the fact that bids must sum up to zero,

with this her bid for project 2 is −B (d1). Now I can consider situations in which for

player 1 it is more convenient to compute her bid for project 2 first, i.e. to take into

account d∗1 = x21 − x11 = −d1. Of course, equilibrium bids can not change with the above

technicality, therefore B∗ (−d1) = B∗ (d∗1) = −B (d1). Since the support of f and f∗

coincides both bidding functions, B and B∗ are well-defined.

Proof of Proposition 8. Proposition 8 follows from Proposition 3 and Lemma 3.

The expected utility player 1 has to maximize in the symmetric set-up can be written as

v1
[
x11, d1, B (y1)

]
=

∫ xH

−y1

[
x11 −

1

2
B (y1) +

1

2
B (d2)

]
f (d2) dd2+

+

∫ −y1

xL

[
x21 +

1

2
B (y1)−

1

2
B (d2)

]
f (d2) dd2.

In the next steps I shall transform the above expression in order to get (5) that will allow

us to use the solution from Proposition 3. Now let us introduce the following change in

the variables: −d∗2 = d2. Note that since the support of f and f∗ is the same I have that
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xL = x∗H and xH = x∗L.

v1
[
x11, d1, B (y1)

]
= −

∫ xL

y1

[
x11 −

1

2
B (y1) +

1

2
B (−d∗2)

]
f (−d∗2) dd∗2+

−
∫ y1

xM

[
x21 +

1

2
B (y1)−

1

2
B (−d∗2)

]
f (−d∗2) dd∗2 =

=

∫ y1

xL

[
x11 −

1

2
B (y1)−

1

2
B∗ (d∗2)

]
f∗ (d∗2) dd

∗
2 +

∫ xM

y1

[
x21 +

1

2
B (y1) +

1

2
B∗ (d∗2)

]
f∗ (d∗2) dd

∗
2.

If B (·) represents player 1’s bid (bidding function) for project 1 in equilibrium, B∗ (·) in

the above expression can be interpreted as player 2’s bid for the alternative project 2.

The variables these functions depend on once again have the same distribution, i.e. I am

back in the asymmetric case. Proposition 8 can be derived from (8) applying the solution

from Proposition 3.

Proof of Proposition 9. From Proposition 3 and Proposition 8 we have that the

optimal bidding function is symmetric, B (−di) = −B (di) for every di and every i, if and

only if the prior distribution is symmetric around 0. Let me show first that symmetry

implies ex-post efficiency. To see that note that x11 + x12 ≥ x22 + x22 → d1 ≥ −d2. By strict

monotonicity of the bidding function B (d1) ≥ B (−d2), that implies ex-post efficiency if

the symmetry condition holds:

B (d1) ≥ −B (d2)→ B (d1) +B (d2) ≥ 0.

For the reverse implication note first that by efficiency

d1 + d2 = 0↔ B (d1) +B (d2) = 0,

−d1 + d1 = 0↔ B (−d1) +B (d1) = 0,

that gives the symmetry condition of B (−d1) = −B (d1) .

7.1 Simulation

This subsection contains theoretical results that have been used in the simulation process

for the uniform, U [−1; 1], example with more than two bidders. Final results of the

simulation are resumed in Table 1. in the main text. In order to analyze the general

n-player as a special case with only two players, e.g. player 1 and the rest of the agents,

the following pieces of notations are introduced: D−1 = B−1 [
∑n

i=2B (di)].

The distributions of the random variables in question are di ∼ iiFd and B (di) ∼
iiFB(d), and by the central limit theorem

∑n

i=2B (di)
a∼ N (µ;σ2). Now I can state a

symmetry result on the optimal bidding function in the general n-player case.
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Lemma 6 If n is large, the distribution of D−1 is symmetric if and only if B is symmetric;

i.e., B (−di) = −B (di) for every di.

Proof. Note that the following relations hold between distribution and density func-

tions:

n∑

i=2

B (di) ∼ FΣ, fΣ;

FD (x) = pr [D−1 ≤ x] = pr

[
n∑

i=2

B (di) ≤ B (x)

]

= FB(d) [B (x)] = FΣ [B (x)] ;

fD (x) =
∂FD (x)

∂x
=

∂FΣ [B (x)]

∂x
= fΣ [B (x)] ·B′ (x) .

Now let me consider the first implication in the proposition with the following equali-

ties: fD (−x) = fΣ [B (−x)] ·B′ (−x). If the optimal bidding function B is symmetric we

also have that fΣ [−B (x)] · B′ (x) = fΣ [B (x)] · B′ (x) = fD (x). That is the underlying

distribution is symmetric.

In order to prove the proposition in the opposite direction, suppose that the distribu-

tion characterized by FD is symmetric. Now one has that

FD (−x) = 1− FD (x) ;

FΣ [B (−x)] = 1− FΣ [B (x)] ;

B (−x) = −B (x) .

That is the optimal bidding function B is symmetric.

Even if I can not compute the optimal bidding function in the general case, I can

deliver a mathematical expression for its explicit form that is useful in the simulation.

Proposition 10 The optimal bidding function in the case of n bidders can be written as

B (d1) =






1
2
d1 +

1
2
[1− 2F (d1)]−

n
n−1 ·

∫ dM
d1
[1− 2F (t)]

n
n−1 dt if d1 < dM

d1
2

if d1 = dM
1
2
d1 − 1

2
[2F (d1)− 1]−

n
n−1 ·

∫ d1
dM
[2F (t)− 1]

n
n−1 dt if d1 > dM






where F is the cumulative distribution function of D−1 = B−1 [
∑n

i=2B (di)].

Proof. Let me define D−1 = B−1 [
∑n

i=2B (di)] ∼ F, f . Now project 1 wins if B (d1)+∑n

i=2B (di) ≥ 0, that is when B−1 [−B (d1)] ≤ D−1. Since the distribution of D−1 is

symmetric by the previous lemma we have that the optimal bidding function is also
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symmetric. With this, project 1 wins if −d1 ≤ D−1.The expected utility for agent 1 can

be written as

v1
[
x11, d1, B (y1)

]
=

∫ xH

−d1

{
x11 −B (y1) +

1

n
[B (y1) +B (D−1)]

}
f (D−1) dD−1+

+

∫ −d1

xL

{
x21 +B (y1)−

1

n
[B (y1) +B (D−1)]

}
f (D−1) dD−1.

Agents are supposed to maximize their expected utility in the bidding. The first order

condition of the problem is ∂
∂y1

v1 [x
1
1, d1, B (y1)] = 0 that gives the following results: the

optimal bidding function must solve the differential equation below for y1 = d1.
[(
1− 1

n

)
− 2

(
1− 1

n

)
F (d1)

]
B′ (d1)− 2B (d1) f (d1) + d1f (d1) = 0

The solution for the differential equation is:

If
(
1− 1

n

)
− 2

(
1− 1

n

)
F (d1) = 0; i.e., F (d1) =

1
2

then B (d1) =
d1
2

.

If F (d1) �= 1
2

then

B′ (d1)− 2
f (d1)(

1− 1
n

)
− 2

(
1− 1

n

)
F (d1)

B (d1) + d1
f (d1)(

1− 1
n

)
− 2

(
1− 1

n

)
F (d1)

= 0.

Let me introduce the notation A (d1) =
f(d1)

(1− 1

n)−2(1−
1

n)F (d1)
and x ∈ [xL, xH ]. The latter

identifies the lowest and the largest admissible value for x. The differential equation and

its general solution can be written now as

B′ (d1)− 2A (d1)B (d1) + d1A (d1) = 0,

B (d1) = exp

(
2

∫ d1

x

A (t) dt

)
·
{
η −

∫ d1

x

[
tA (t) · exp

(
−2

∫ t

x

A (s) ds

)]
dt

}
.

Note that the integrals in the solution might include a difference such that A (d1) is not

defined, therefore x must be carefully chosen. This parameter along with η can be fixed

taking into account that the optimal bidding function must be continuous and strictly

increasing.

For d1 > dM fix some x > dM and choose η such that B′ (d1) > 0.

∫ d1

xH

[
tA (t) · exp

(
−2

∫ t

xH

A (s) ds

)]
dt =

= −1
2
d1 · [2F (d1)− 1]

n
n−1 +

1

2
xH +

1

2

∫ d1

xH

[2F (t)− 1]
n

n−1 dt

B (d1) =
1

2
d1 + [2F (d1)− 1]−

n
n−1 ·

[
η − 1

2
xH +

1

2

∫ xH

d1

[2F (t)− 1]
n

n−1 dt

]
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Let us choose η = 1
2
xH − 1

2

∫ xH
dM
[2F (t)− 1]

n
n−1 dt.

One can solve similarly for the opposite case, d1 < dM . Finally one gets that

B (d1) =






1
2
d1 +

1
2
[1− 2F (d1)]−

n
n−1 ·

∫ dM
d1
[1− 2F (t)]

n
n−1 dt if d1 < dM

d1
2

if d1 = dM
1
2
d1 − 1

2
[2F (d1)− 1]−

n
n−1 ·

∫ d1
dM
[2F (t)− 1]

n
n−1 dt if d1 > dM





.

The problem with the above result is that the formula for B (d1) implicitly contains

the inverse of the optimal bidding function, because the distribution function F is defined

in D−1 = B−1 [
∑n

i=2B (di)] ∼ F, f . That is
∑n

i=2B (di)
a∼ N (µ;σ2) and FD (x) =

FΣ [B (x)]. But we can use these results for simulating the optimal bidding function

and computing a measure for its efficiency. The optimal bidding function is determined

according to the following iterative procedure:

1. Take as given
∑n

i=2B (di) ∼ FΣ, possibly some N (µ;σ2), and compute with it

BF1 (d1).

2. Compute F2 (d1) = FΣ [BF1 (d1)].

3. Using the resulting distribution function F2 (d1) from the previous point compute

BF2 (d1).

4. Repeat the procedure 1.-3. until the result converges, that ismaxd1
∣∣BFn−1 (d1)−BFn (d1)

∣∣ <
ε for some predefined ε > 0.

In the example presented in the paper ε = 10−5 and I have used 501 evaluation points

in the [−1; 1] interval in order to plot the optimal bidding function. The number of ex

post efficient decisions has been approximated by a Monte Carlo experiment with 50000

draws. Results are presented in Table 1. in the main text of the paper.
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